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SUMMARY 
 

 

 

 Public transit agencies often struggle with service reliability issues; when a bus or 

train does not arrive on time, passengers become frustrated and may be less likely to 

choose transit for future trips.  To address reliability problems, transit authorities 

increasingly provide real-time vehicle location and arrival information to riders via web-

enabled and mobile devices.  Although prior studies have found several benefits of 

offering this information to passengers, researchers have had difficulty determining if 

real-time information affects ridership levels.  Therefore, the objective of this dissertation 

is to quantify the impact of real-time information on public transit ridership.   

 Statistical and econometric methods were used to analyze passenger behavior in 

three American cities that share a common real-time information platform: New York 

City, Tampa, and Atlanta.  New York City was the setting for a natural experiment in 

which real-time bus information was gradually launched on a borough-by-borough basis 

over a three year period.  Panel regression techniques were used to evaluate route-level 

bus ridership while controlling for changes in transit service, fares, local socioeconomic 

conditions, weather, and other factors.  In Tampa, a behavioral experiment was 

performed with a before-after control group design in which access to real-time bus 

information was the treatment variable and web-based surveys measured behavior 

changes over a three month period.  In Atlanta, a methodology to combine smart card 

fare collection data with web-based survey responses was developed to quantify changes 

in transit travel of individual riders in a before-after study.  In summary, each study 



 xiv 

utilized different data sources and quantitative methods to assess changes in transit 

ridership.   

 The results varied between cities and suggest that the impact of real-time 

information on transit travel is greatest in locations that have high levels of transit 

service.  These findings have immediate implications for decision-makers at transit 

agencies, who often face pressure to increase ridership with limited resources.       

   



 

1 

CHAPTER 1  
 

INTRODUCTION  
 

 

 

Background and Motivation 

 Public transit plays an important role in metropolitan transportation systems.  

Transit can help to reduce carbon dioxide emissions, decrease gasoline consumption, and 

combat roadway congestion in urban areas (Schrank, Eisele, & Lomax, 2012).  It is one 

of the safest modest of passenger transport, as evidenced by low passenger fatality rates 

(Federal Transit Administration, 2009).  Other benefits of transit include providing 

personal mobility options for those who cannot or choose not to drive (American Public 

Transportation Association, 2014) and positive public health impacts associated with 

active lifestyles (Besser & Dannenberg, 2005).  Despite these benefits, transit agencies in 

many American cities struggle to increase (and in some cases, maintain) ridership levels 

as they compete with other modes of passenger transportation, particularly single-

occupancy motor vehicles.   

 To meet the mobility needs of passengers, transit service must be fast, frequent, 

and reliable, among other things (Walker, 2012).  Reliability can be improved in many 

ways, including: increasing levels of right of way, such as providing a dedicated lane; 

using service planning approaches, such as adding slack to scheduled running times; or 

implementing control strategies, such as holding vehicles that are ahead of schedule.  

While supply-side strategies can be effective at improving reliability, they often come at 

a substantial cost.  



 2 

  Recently, a body of literature has emerged that presents a demand-side strategy to 

improving (the perception) of reliability of transit service.  Carrel et al. (2013) have 

demonstrated that providing real-time transit information helps passengers adapt when 

service is unreliable (Carrel, Halvorsen, & Walker, 2013).  Real-time transit information 

can also help riders feel more in control of their trip, particularly their time spent waiting 

for transit vehicles (Watkins, Ferris, Borning, Rutherford, & Layton, 2011).  Moreover, it 

can be provided to transit passengers in an increasingly cost-effective manner via web-

enabled and mobile devices (Schweiger, 2011).  Consequently, many transit agencies in 

the United States have begun to provide real-time transit information to riders 

(Schweiger, 2011).   

 Given this trend, transit providers want to understand if these new customer 

information systems increase ridership.  Because transit travel is affected by numerous 

factors, such as macroeconomic conditions and weather, previous studies have had 

difficulty isolating changes in transit trip-making that may have been caused by providing 

real-time information.  Therefore, this research aims to quantify the impact of real-time 

information on transit travel.   

Research Approach 

 Transit systems differ significantly from city to city, including characteristics of 

the transit network that affect rider behavior as well as the data available for analysis.  

Therefore, this research utilized mixed methods in a multi-city approach to assess 

changes in transit ridership.  The overall approach was quantitative analysis of three 

different transit systems (New York City, Tampa and Atlanta) that share a common real-

time transit information system, known as OneBusAway.    
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Overview of OneBusAway 

 The OneBusAway transit traveler information system was originally developed in 

2008 at the University of Washington to provide real-time bus arrival information for 

riders in greater Seattle.  OneBusAway provides multiple interfaces to access automatic 

vehicle location (AVL) data, including a website (Figure 1), a website optimized for 

internet-enabled mobile devices, and native applications for iPhone, Android and 

Windows smartphones (OneBusAway, 2014).  Since OneBusAway was originally 

created over five years ago, it has realized a significant increase in utilization, and it 

currently hosts more than 100,000 unique users per week.  Notably, OneBusAway was 

developed as an open-source system, which enables the code to be used in other cities.  

 The Metropolitan Transportation Authority (MTA) in New York City became the 

first transit agency to reuse the OneBusAway code base, which they adapted for their 

real-time bus customer information system.  Beginning in 2011 and continuing through 

2014, the MTA gradually rolled-out real-time information on all MTA bus routes in New 

York City.  While this system is branded as Bus Time (instead of OneBusAway) and has 

some modifications to the user interface (see Figure 1), it is similar in functionality and 

feel to the OneBusAway system in Seattle.    
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Figure 1: OneBusAway Website for Seattle and Bus Time Website for New York City 

 

 The third instance of OneBusAway was deployed in Tampa, Florida.  Researchers 

at the University of South Florida worked in coordination with Hillsborough Area 

Regional Transit (HART) and Georgia Tech (including the author) to deploy 

OneBusAway in a small-scale pilot program for all HART operated bus routes in early 

2013.  A full-scale public instance was deployed in Tampa in the summer of 2013 

(Hillsborough Area Regional Transit, 2013).  

 In Atlanta, Georgia Tech (including the author) worked to deploy OneBusAway 

for transit service operated by the Metropolitan Atlanta Rapid Transit Authority 

(MARTA).  A “beta” version of OneBusAway with real-time MARTA bus information 

became available in the spring of 2013, which was primarily used by a small number of 

Georgia Tech students and staff.  A public deployment with MARTA bus and train real-

time information and Georgia Tech shuttle real-time information occurred almost one 

year later in February 2014.  In the time between the beta launch and the full-scale 

deployment, MARTA developed their own real-time information smartphone 
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applications in-house and released them in the fall of 2013, which became important for 

the evaluation of real-time information in Atlanta.   

 In summary, four major American cities have similar real-time transit information 

systems, providing a unique opportunity to study rider impacts in a multi-city approach.  

Because there have been numerous studies of the rider benefits of real-time information 

in Seattle, Washington (Ferris, Watkins, & Borning, 2010; Watkins, Ferris, Borning, 

Rutherford, & Layton, 2011; Gooze, Watkins, & Borning, 2013), this research focuses on 

the three newest deployments of OneBusAway: New York City, Tampa, and Atlanta.  

While these cities share a similar real-time information platform, they differ in the 

characteristics of the transit systems themselves, the way in which real-time information 

was launched, and the data available for analysis.  Therefore, a different methodology has 

been utilized to study each city, and this is briefly delineated in the following sections.  

Study 1: New York City 

 In New York City, most bus service is operated by New York City Transit 

(NYCT) under the umbrella organization of the Metropolitan Transportation Authority 

(MTA).  NYCT operates the largest bus system in the country with an annual ridership of 

approximately 805 million unlinked passenger trips (Federal Transit Administration, 

2012) and approximately 200 fixed bus routes (Metropolitan Transportation Authority, 

2014). 

 As was previously noted, Bus Time was gradually rolled out on bus routes in New 

York City, which allowed for a natural experiment in which routes with real-time 

information could be compared to those without real-time information.  Route-level 

ridership was the primary variable of interest over the multi-year period in which the real-
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time information system was deployed.  To assess if real-time information increased 

ridership, other factors that affect transit ridership must also be accounted for.  Therefore, 

panel regression was chosen as an econometric approach to modeling bus ridership over 

time while controlling for changes in transit service, fares, weather, and other factors. 

 NYCT monitors average weekday route-level ridership on all bus routes for 

planning and reporting purposes, so this was the primary unit of analysis.  Unfortunately, 

the agency does not have some more advanced technologies, such as smart card fare 

collection systems, that measure ridership at more refined levels.  The data for this 

analysis was therefore constrained by availability.   

Study 2: Tampa 

 In the Tampa Bay region, most bus service is operated by the Hillsborough Area 

Regional Transit (HART).  This small-sized bus system has an annual ridership of 

approximately 14 million unlinked bus trips (Federal Transit Administration, 2012) and 

approximately 40 fixed bus routes.  

 In 2012, HART granted the University of South Florida (and research partner 

Georgia Tech) special access to their real-time bus data in order to develop an instance of 

OneBusAway.  Since previously there were no other means for HART riders to access 

real-time information through web-enabled or mobile devices, this was a unique 

opportunity to expose a controlled population to real-time information and compare them 

to riders without access to real-time information.  Therefore, a behavioral experiment was 

selected as the methodology for this study.  The specific method was a before-after 

control group research design in which the treatment was access to OneBusAway over a 

study period of approximately three months (Campbell & Stanley, 1963).    
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 The data used to measure behavior change was from two web-based surveys: one 

administered before and another after the completion of the study period.  The surveys 

measured changes in transit trips, as well as other possible benefits of real-time 

information, such as wait times and satisfaction with transit service.  Again, the transit 

agency lacked some newer methods of transit data collection, such as smart cards.   

Study 3: Atlanta 

 In Atlanta, the Metropolitan Atlanta Rapid Transit Authority (MARTA) operates 

the fifteenth bus largest system in the United States with an annual ridership of 

approximately 61.6 million unlinked bus trips (Federal Transit Administration, 2012) and 

approximately 95 fixed bus routes. 

 Real-time information became available for all MARTA bus routes via a beta 

version of OneBusAway in the late spring of 2013.  MARTA’s apps became available 

with real-time information for all buses and trains in the fall of 2013, and OneBusAway 

was publicly launched in February 2014 for all MARTA buses and trains.  In light of the 

gradual increase in real-time information options in Atlanta, a before-after analysis was 

selected to evaluate changes in transit travel by MARTA riders between the spring of 

2013 and the spring of 2014.   

 Atlanta was the only one of the three cities with both a contactless smart card 

ticketing system and real-time transit information, which presented a unique opportunity 

to examine changes in trip-making patterns using smart card data.  In order to understand 

which smart card users were also real-time users, a short online survey was conducted in 

which respondents were asked about their use of real-time information and for their 

unique 16-digit smart card ID number.  The smart card ID number was then used to link 
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the survey response to the corresponding smart card trip history; and this joint smart 

card/survey dataset allowed for a disaggregate before-after analysis of transit trips in 

which users of real-time information were compared with non-users. 

Comparison 

 Table 1 presents a summary of the three studies, including the size of the transit 

system, the real-time information deployment timeline, the methodology, and the data 

sources.  In summary, this research utilized mixed methods in a multi-city approach to 

assess changes in transit ridership attributable to providing real-time information.    

  

Table 1: Comparison of Three Studies 

 New York City Tampa Atlanta 

Transit 

Agency 
NYCT HART MARTA 

Size of 

Ridership 
Annual Unlinked 

Bus Trips* 

Large 

805,381,461 

Small 

14,314,610 

Medium 

61,596,727 

Real-Time 

Information 

Deployment  

Bus Time 

deployed on 

groups of routes 

between 2011 

and 2014   

OneBusAway 

spring 2013 (pilot); 

OneBusAway full 

deployment in 

summer 2013 

OneBusAway spring 2013 

(beta);  
MARTA apps in fall 2013; 

OneBusAway full deployment 

in February 2014 

Methodology 

Natural 

experiment with 

panel regression 

Behavioral 

experiment with a 

before-after control 

group design 

Before-after analysis of transit 

trips 

Primary Data 

Sources 

Route-level 

ridership counts 
Web-based surveys 

Web-based survey combined 

with smart card data 

*2012 statistics from the National Transit Database. 
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Results 

 The following is a brief summary of the results of each study.  In New York City, 

two fixed effects panel regression models with robust standard errors were presented.  

The first model, which included real-time information as a single binary variable, showed 

an average increase of approximately 118 rides per route per weekday (median increase 

of 1.7% of weekday route-level ridership) attributable to the availability of real-time 

information.  The second model, which divided the real-time information variable based 

on quartiles of bus service per route, suggests that the ridership increase occurred on the 

largest routes.  This increase was approximately 340 rides per weekday on the largest 

routes (median increase of 2.3% of route-level ridership).  These results suggest that real-

time information may have the greatest impact on routes with higher levels of service.    

 In Tampa, the frequency of bus trips per week was evaluated before and after the 

availability of real-time information, but the change in transit trips over the study period 

did not differ significantly between real-time information users and non-users.  This was 

not surprising since the majority of bus riders in Tampa are transit-dependent, meaning 

they lack other transportation alternatives.  Analysis of “usual” wait times revealed a 

significantly larger decrease (nearly 2 minutes) for real-time information users compared 

to the control group during the study period.  Additionally, real-time information users 

had significant decreases in levels of anxiety and frustration when waiting for the bus 

compared to the control group.  These findings provide strong evidence that real-time 

information significantly improves the passenger experience of waiting for the bus, which 

is notoriously one of the most disliked elements of transit trips (Mishalani et al. 2006).   

 Finally, in Atlanta, smart card trip histories were combined with survey results in 

order to compare changes in monthly transit trips from April 2013 to April 2014 for real-

time information users versus non-users.  Difference of mean tests and regression 
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analysis of before-after differences in monthly trips suggest that real-time information 

was not associated with a significant change in monthly transit trips; however, the final 

sample size that resulted from the data cleaning methodology was very small.   

 In summary, two of the three studies (Tampa and Atlanta) did not find a 

substantial change in transit travel associated with use of real-time information, but the 

methodologies used to study Tampa and Atlanta did not consider completely new transit 

riders.  However, the New York City study did show an increase in ridership associated 

with the availability of real-time information, and this likely occurred on the routes with 

the greatest level of preexisting transit service.  Since New York City has substantially 

more bus service than Atlanta or Tampa in terms of the number of routes, the span of 

service, and the frequency of service on most (if not all) routes, this suggests that the 

potential for ridership gains due to real-time information may be greatest in areas that 

already have high levels of existing transit service.    

Contributions 

 This research makes a number of important contributions.  The New York City 

study compared various panel regression techniques, some of which are not commonly 

used in the transit literature.  The Tampa study included a behavioral experiment, which 

is a methodology rarely found in the transportation literature.  While there are a few 

recent examples in the transit literature (Fujii & Kitamura, 2003; Rodriguez & Rogers, 

2014), to the best of the authors knowledge, there are no existing examples of controlled 

experiments evaluating smartphone applications and websites in transportation systems.  

The Atlanta study uses an emerging data source (smart cards) combined with web-based 

survey data to study the behavior of individual transit riders.  This combination of data is 
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a novel approach to studying traveler behavior over time, and it could be more broadly 

applied for transit marketing and travel behavior analyses.  

 Last, this research aims to understand if real-time information increases transit 

ridership, which is a critical question asked by decision-makers at the country’s transit 

operators.  Many transit agencies face pressure to increase ridership under tight budget 

constraints, and they must make difficult choices between investments in infrastructure, 

service changes, and new technologies.  Therefore, this research has immediate 

implications for leaders in the transit industry making important decisions on how to 

improve America’s public transportation systems.   

Dissertation Structure 

 This dissertation is structured in a three paper format.  Each chapter is a separate 

study about the respective city (New York City, Tampa, and Atlanta) and each chapter is 

in preparation for submission to a journal or is already under review.  Chapters begin 

with an abstract, and this is followed by background and motivation, a literature review, 

discussion of the methodology, conclusion and suggestions for future research.  

Additionally, each chapter has a separate list of referenced literature.  The three 

manuscripts are followed by a conclusions chapter, which includes a brief comparison of 

studies, concluding remarks, areas for future research, and a master reference list that 

includes all of the literature cited in this dissertation.   
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CHAPTER 2  

 

NEW YORK CITY 
 

 

 

Brakewood, C., Macfarlane, G., and Watkins, K. (2014).  The Impact of Real-Time 

Information on Bus Ridership in New York City.  In preparation for submission to 

Transportation Research Part C: Emerging Technologies. 

 

 

 

Abstract 

 In the past few years, numerous mobile applications have made it possible for 

public transit passengers to find routes and/or learn about the expected arrival of their 

transit vehicles.  Though these services are widely used, their impact on overall transit 

ridership remains unclear. The objective of this research is to assess the effect of real-

time information provided via web-enabled and mobile devices on public transit 

ridership.  An empirical evaluation is conducted for New York City, which is the setting 

of a natural experiment in which a real-time bus tracking system was gradually launched 

on a borough-by-borough basis beginning in 2011.  Panel regression techniques are used 

to evaluate bus ridership over a three year period, while controlling for changes in transit 

service, fares, local socioeconomic conditions, weather, and other factors.  A fixed effects 

model of average weekday bus ridership per month reveals an increase of approximately 

118 rides per route per weekday (median increase of 1.7% of weekday route-level 

ridership) attributable to providing real-time information.  Further refinement of the fixed 

effects model suggests that this ridership increase may only be occurring on larger routes; 

specifically, the largest quartile of routes defined by revenue miles of service realized 

approximately 340 additional rides per route per weekday (median increase of 2.3% per 
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route).  While the increase in weekday route-level ridership may appear modest, 

aggregate impacts – particularly on large routes – demonstrate a substantial effect on 

overall ridership.  The implications of this research are critical to decision-makers at the 

country’s transit operators who face pressure to increase ridership under limited budgets, 

particularly as they seek to prioritize investments in infrastructure, service offerings, and 

new technologies.     

Introduction 

 Public transit plays an important role in urban transportation systems.  Transit can 

help to combat roadway congestion, decrease gasoline consumption, and reduce carbon 

dioxide emissions in metropolitan areas (Schrank et al., 2012).  Other benefits of transit 

include providing personal mobility options for those who cannot or choose not to drive 

(American Public Transportation Association, 2014) and supporting active mobility and 

its subsequent positive health impacts (Besser & Dannenberg, 2005).  Despite these 

benefits, transit agencies in many American cities struggle to increase (and in some cases, 

maintain) ridership levels as they compete with other modes of passenger transportation, 

particularly single-occupancy motor vehicles.   

 In order for public transit to be a viable option for travelers, it must be reliable, 

accessible, and presented in an understandable manner, among other things (Walker, 

2012).  These factors can potentially be improved with new customer information 

systems, which transit agencies are rapidly implementing. The widespread adoption of 

mobile devices by transit passengers has led to growing reliance on these devices and 

increased expectations for transportation information provided in personalized formats.  

Moreover, these applications are frequently more cost-effective to deploy than 
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infrastructure displaying this information, such as dynamic message signs.  

Consequently, the availability of web and mobile “apps” providing transit information – 

particularly real-time vehicle location/arrival information – is increasing at an 

unprecedented pace over the last decade (Schweiger, 2011).   

 Given the rapid increase in availability of transit apps, quantifying the impact of 

real-time transit information on actual travel behavior is essential for transit operators to 

make responsible decisions regarding the implementation of these systems and for 

planning agencies to properly plan for future scenarios.  Because transit travel is affected 

by numerous factors, such as macroeconomic conditions and the weather, previous 

studies have had difficulty isolating changes in transit ridership due to real-time 

information.   

 This paper relies on a natural experiment that occurred in New York City 

beginning in 2011, when the MTA began to gradually deploy real-time information on its 

buses operating in each borough of New York City on a by-borough basis.  This 

deployment pattern enables use of regression techniques that control for unobserved 

route-level and time-dependent effects.  The results of this analysis indicate that real-time 

information is associated with an increase of approximately 118 rides per route on an 

average weekday, although this appears to be occurring primarily on the largest bus 

routes.   

 This paper proceeds as follows.  First, prior research into the effects of traveler 

information systems on transit passengers is presented to provide a basis for the 

contribution of this research.  Next, the methodology for data collection and econometric 
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analysis is discussed, with results presented thereafter.  Finally, areas for improvement, 

future research, and concluding remarks are presented.  

Prior Research 

 Real-time information (RTI) refers to the tracking of transit vehicle locations 

and/or predicted arrival times for vehicles at stops and/or stations, which is typically 

updated every minute or so.  As the practice of providing RTI to transit riders via web-

enabled and mobile devices has become increasingly ubiquitous, the body of literature 

assessing the impacts on passengers has also grown.  Studies of transit riders using RTI 

have found many benefits, including adapting to unreliability by choosing alternative 

transit service (Carrel, Halvorsen, & Walker, 2013), reducing waiting times (Watkins, 

Ferris, Borning, Rutherford, & Layton, 2011), increasing perception of personal security 

(Ferris, Watkins, & Borning, 2010; Gooze, Watkins, & Borning, 2013; Zhang, Shen, & 

Clifton, 2008), and increasing satisfaction with transit service (Ferris et al., 2010; Gooze 

et al., 2013; Zhang et al., 2008).  If RTI users can adapt to unreliable service more easily, 

spend less time waiting, feel safer, and/or are more satisfied with overall service, it 

follows that they may make more trips on the transit system, either by choosing transit 

over alternative modes or making trips that they would not have made otherwise.   

 A number of recent studies have aimed to understand the impacts of RTI on 

transit travel.  A few studies utilize simulation modeling techniques and/or stated 

preference data, where researchers propose hypothetical scenarios to survey participants 

as opposed to directly observing their behavior, and these include Tang & Thakuriah 

(2010), Fries, Dunning, & Chowdhury (2011), and others.  This brief literature review 

focuses on research that evaluates actual transit rider behavior (as opposed to simulation 
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or stated preference methods) because these studies are most likely to provide the 

concrete conclusions needed for decision-makers at transit agencies.   

 A panel study conducted from 2006 to 2007 on the University of Maryland 

campus measured changes before and after the implementation of an RTI system on the 

university shuttle bus network (Zhang et al., 2008).  Based on a fixed effects ordered 

probit model of individual travelers’ monthly shuttle trips, the authors concluded that RTI 

did not significantly affect shuttle bus trip frequency.  One possible explanation the 

authors identify is that the number of shuttle trips was measured only two weeks after an 

extensive marketing campaign of the new RTI system, and there may have been 

insufficient time for adjustments of travel behavior (Zhang et al., 2008).  Another 

possibility is that the population under study was an academic community with 

potentially inelastic travel behavior; class and activity schedules may be relatively fixed, 

and would not therefore be substantially affected by new information. 

 Conversely, two studies of bus riders in Seattle, Washington provide some 

evidence that use of mobile RTI may lead to an increase in trips made on transit.  In 

2009, Ferris et al. (2010) conducted a web-based survey of over 400 RTI users and asked 

respondents if their average number of transit trips per week changed as a result of RTI.  

Approximately 31% of users reported increases in non-commute trips (1 trip, 2 trips, or 

3+ trips per week), while a smaller percentage reported increases in commute trips on 

transit.  A follow-up web-based survey of RTI users in 2012 found similar results (Gooze 

et al., 2013).  However, the authors identified two important caveats for these studies: the 

survey results were all self-reported and did not include a control group of non-RTI users.   
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 The most relevant prior study in the context of this paper is an empirical 

evaluation of the real-time bus tracking system in Chicago (Tang & Thakuriah, 2012).  

The authors modeled average weekday route-level bus ridership for each month from 

2002 until 2010, during which time Chicago’s real-time vehicle tracking system was 

incrementally rolled out between August 2006 and May 2009.  Controlling for 

unemployment levels, weather, gas prices, population, and transit service attributes (such 

as fares and frequency of service), Tang and Thakuriah showed a “significant” but 

“modest” increase of 126 average weekday rides per route attributable to RTI, which was 

an increase of approximately 1.8-2.2%.  However, the authors identified a number of 

limitations to their study that could have contributed (favorably or otherwise) to their 

results:   

1. Number of Real-Time Information Interfaces: The ways riders received 

information from the original RTI system changed greatly since the basic 

technology was implemented in 2006, which began with a simple web interface 

and later expanded to include smartphone applications. 

2. Technology Adoption: RTI was only available to those who had the devices 

needed to access it (e.g., computers or handheld devices with internet); thus, 

riders who did not have these technologies could not use it.  This is noteworthy in 

the beginning of the study period, when levels of mobile technology adoption 

were lower.  For comparison, the Apple iPhone debuted in June 2007 (Apple 

Computer, 2007), and a public release of Google’s Android software followed in 

late 2008 (Morrill, 2008); only near the end of the study period had modern 

smartphones achieved widespread market penetration.  
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3. Awareness of Real-Time Information: It is possible that many travelers were 

unaware of RTI during the period of analysis.  

 This leads to three noteworthy items that could be improved in future research.  

The quasi-experimental design used in the Chicago study would be more suitable in a 

transit system launching RTI under the following three conditions: (1) a simultaneous 

launch on multiple interfaces (i.e. website, SMS, and smartphone applications), (2) a 

passenger population with high levels of technology adoption (particularly mobile 

devices), and (3) a coordinated marketing campaign to increase awareness.  These three 

characteristics describe another major metropolitan area that recently launched a real-

time bus customer information system: New York City. 

Methodology 

 This section describes the methodology used to evaluate the ridership impacts of 

the bus RTI system in New York City.  First, some background information about the 

New York City transit system and the launch of the bus RTI system is presented.  This is 

followed by the results of an on-board survey supporting the assumptions of high levels 

of awareness and adoption of RTI.  Next, a description of the data used in the ridership 

analysis is provided, and finally, the specific modeling approach, panel regression, is 

discussed.   

Background on New York City Transit 

 In New York City, most local bus service is operated by New York City Transit 

(NYCT) under the umbrella organization of the Metropolitan Transportation Authority 

(MTA).  NYCT operates both the largest heavy rail system (the Subway) and bus system 

in the country with an annual ridership of approximately 2.50 billion unlinked rail trips 
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and approximately 800 million unlinked bus trips, respectively (Neff & Dickens, 2013).  

The bus system, which is the focus of this analysis, includes approximately 200 fixed 

routes that serve the five boroughs of New York City: Manhattan, Queens, Brooklyn, 

Staten Island and the Bronx (Metropolitan Transportation Authority, 2014a). 

Roll-out of Real-Time Bus Information 

 In 2009, the MTA executive leadership team made providing RTI a strategic 

priority, and the agency rapidly began to roll-out real-time bus information through a 

platform known as Bus Time (Rojas, Weil, & Graham, 2012).  Bus Time was initially 

launched on a single bus route in Brooklyn (the B63) on February 1, 2011 (Metropolitan 

Transportation Authority, 2011).   After this ‘pilot’ route, Bus Time was (mostly) 

expanded on a borough-by-borough basis.  On January 11, 2012 Bus Time was launched 

on all NYCT bus routes operating in the borough of Staten Island (Metropolitan 

Transportation Authority, 2012a).  This was followed by the availability of Bus Time on 

a single route in Manhattan (the M34) in April 2012 and another route in Brooklyn (the 

B61) in July 2012.  The second borough-wide launch occurred in the Bronx on 

November 9, 2012, and nearly one year later, on October 7, 2013, Bus Time became 

available for all routes in Manhattan (Metropolitan Transportation Authority, 2013).  On 

March 9, 2014, Bus Time was launched on all remaining bus routes in Queens and 

Brooklyn (Metropolitan Transportation Authority, 2014c).  The gradual roll-out of Bus 

Time is summarized in Figure 2; notably, this launch timeline creates a natural 

experiment in which routes with RTI can be compared to routes without RTI during an 

equivalent time period, while simultaneously controlling for other factors that could 

affect ridership.  
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Figure 2: Timeline of the Real-time Information System Launch in New York City 

 

Real-Time Information Interfaces, Technology Adoption, and Marketing 

 New York City advantageously has three characteristics that may improve upon 

the natural experiment previously used by Tang and Thakuriah (2012) in Chicago: (1) a 

simultaneous launch of RTI on multiple interfaces, (2) a transit riding population with 

high levels of technology adoption, particularly mobile, and (3) a coordinated marketing 

campaign to increase awareness of RTI.   

 The first characteristic – a simultaneous launch of RTI on multiple interfaces – 

occurred in New York City in two primary ways.  First, each Bus Time launch included 

three MTA-managed interfaces: a desktop website, a mobile website, and SMS/text 

messaging (Metropolitan Transportation Authority, 2014c).  Additionally, the MTA 

freely released the real-time bus tracking data to software developers in parallel to the 

launch of the MTA-managed interfaces since the initial pilot route launched in Brooklyn.  

This “open data” approach resulted in the availability of numerous smartphone and web 

applications created by independent third party developers (Metropolitan Transportation 

Authority, 2014d).   

 The second characteristic – a transit riding population with high levels of 

technology adoption – is important to assure that passengers have access to the digital 

tools necessary to use RTI.  The MTA invested significant efforts in customer research to 
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understand levels of technology adoption by transit riders prior to the first borough-wide 

launch of real-time information in Staten Island.   In December 2011, approximately one 

month prior to the launch, the MTA conducted an on-board rider survey on both local and 

express bus routes in Staten Island, in which a total of 1,536 paper surveys were 

collected.  Riders were asked which technologies or devices they had used in the last 30 

days, and of the 1,304 replies to this question, 62% stated that they had used text 

messaging, 62% had used internet on a computer, 52% had used a smartphone, and 51% 

had used the internet on a mobile phone.  These survey results indicate that a majority of 

riders had one or more means to access real-time information prior to its first borough-

wide launch. 

 Third, the MTA conducted a targeted marketing campaign to increase awareness 

of RTI in coordination with each launch.  This included posting instructions about how to 

use Bus Time on the poles at hundreds of bus stops (known as Guide-a-Rides) to alert 

riders of this new service as they wait for the bus.  In summary, the combination of these 

three characteristics is likely to have led to high levels of RTI utilization, and 

consequently, may also result in ridership impacts in a relatively short time period.  

Awareness and Utilization of Real-Time Information in Staten Island 

 To understand actual levels of rider awareness and utilization, an on-board survey 

was conducted a few months after the first borough-wide launch of real-time information 

in Staten Island.  The MTA administered an on-board paper survey for local bus routes in 
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Staten Island in mid-May 2012 and for express routes in early June 2012.
 1

  A total of 

1,496 surveys were collected, and the results are shown in Table 2.  Of the 1,404 

respondents who answered the survey question about awareness, 73% stated that they had 

read about or heard about Bus Time in Staten Island.  Two thirds (66%) of respondents 

who were aware of Bus Time had used it, which equates to nearly half (44%) of all riders 

surveyed.  A total of 30% of Staten Island survey respondents used Bus Time on the day 

that they were surveyed, either on that specific trip (25%) or on another bus trip (7%).  

Last, riders who said they had used Bus Time were asked how frequently they use it, and 

55% of them stated that they use Bus Time on “most or all” of their Staten Island Bus 

trips (not shown in the table).  In summary, only a few months after the first borough-

wide launch, there were high levels of awareness and utilization of real-time information 

in Staten Island, and it is likely that other boroughs achieved similar (if not greater) levels 

of awareness and utilization because similar outreach campaigns were used with each 

launch.  

  

                                                 

 

 
1
 The data from the May/June 2012 Staten Island bus rider survey were provided by the 

MTA to the lead author.  
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Table 2: Awareness and Utilization of Real-Time Information in Staten Island 

Topic Question** Answers Count 
Responded 

%* 

Total 

%* 

Awareness 

Have you read or heard 

about MTA Bus Time in 

Staten Island, a new way 

for riders to get information 

about how many stops or 

miles aware the next bus is? 

Yes 1028 73% 69% 

No 278 20% 19% 

Not sure 98 7% 7% 

Total Respondents 1404 100% 94% 

No Answer 92 - 6% 

Utilization 

Have you ever used Bus 

Time in Staten Island? 

Yes 658 66% 44% 

No 343 34% 23% 

Total Respondents 1001 100% 67% 

Unaware/Not sure/No Answer 495 - 33% 

Did you use MTA Bus 

Time today? 

Yes, for this bus trip 372 38% 25% 

Yes, for another bus trip 103 10% 7% 

Yes (this trip or another trip) 442 45% 30% 

No 547 55% 37% 

Total Respondents 989 100% 66% 

Unaware/Not sure/No Answer 507 - 34% 

    All Respondents 1496 100% 100% 

* All percentages rounded to the nearest whole percent.   

** Question wording is exactly as it appeared on the survey instrument.   

 

 

Data Collection and Assembly 

 The primary variable of interest in this analysis is bus ridership.  Because real-

time information was rolled out on different routes at different times (typically in the 

same borough), bus ridership was assessed at the route level.  Average weekday route-

level bus ridership per month was selected as the unit of analysis because this is regularly 

tabulated by NYCT using data from the fare collection system and is commonly used for 

long term transportation planning analyses.  A total of 185 bus routes (or groups of 

routes) operated by NYCT were considered in the analysis.  Routes operated by the MTA 

Bus Company were not included in the analysis because the data was not available to the 

authors.  A small number of routes were grouped due to joint scheduling/counts, which 
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occasionally occurs for routes operating in the same corridor (e.g. M101/2/3, BX40/42, 

etc.).
2
   

 Average weekday route-level ridership was compiled for each month during a 

three year period from January 2011 until December 2013 (36 months), which begins 

shortly before the launch of real-time information on the pilot route in Brooklyn and 

continues through the borough-wide launches in Staten Island, the Bronx, and Manhattan. 

Notably, there were no major service changes during the study period, though a major 

service cut occurred approximately six months earlier in June 2010 (Grynbaum, 2010).   

 Figure 3 shows the average weekday bus ridership per month with routes 

aggregated by borough.  Borough designation was based on the MTA route name.  

Routes that begin in B were assigned to Brooklyn, BX to the Bronx, M to Manhattan, S 

to Staten Island, and Q to Queens.
3
  As can be seen in Figure 3, Brooklyn has the highest 

overall average weekday ridership and Staten Island has the lowest.  The data also exhibit 

strong seasonal trends, with the highest levels of ridership typically occurring in March 

and May and the lowest usually in August. 

                                                 

 

 
2
 Five NYCT operated routes, which each had less than 500 average weekday rides, were 

excluded from the analysis.  These five routes were either added or removed during the 

study period, and eliminating these very small routes allowed for a balanced panel. 
3
 Express routes (X routes) shown in Figure 3 were assigned a borough for the following 

analysis based on their origin, since most express routes originate in one of the four outer 

boroughs and terminate in Manhattan. 
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Figure 3: Average Weekday NYCT Bus Ridership by Borough per Month, 2011-2013 

  

 To isolate the effect of real-time information on ridership, other factors that may 

have also affected NYCT bus ridership during the three year study period were taken into 

account.  Table 3 provides a brief description of each variable considered in the analysis.  

The explanatory variables were classified into two groups, transit-related and external 

factors, based on the categorization used by Tang & Thakuriah (2012).  Transit-related 

variables were those that were largely under the control of the transit agency (such as 

fares, service provision, etc.), whereas external factors were mostly outside the influence 

of the transit provider.  To the right of the categorization, a brief description, geographic 

unit, and source of data of each variable are provided.    
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Table 3: Variables and Data Sources 
 

Category Variable Description Geographic Unit Variable Type Data Source 

Dependent 

Variable 

Average Monthly 

Weekday Bus Ridership  
Route Continuous 

New York City 

Transit 

Explanatory 

Variables 

(Transit-

related) 

Bus Time Real-Time 

Information Available  
Route Binary MTA Press Releases 

Bus Average Weekday 

Scheduled Revenue Miles  
Route Continuous 

New York City 

Transit 

Select Bus Service  Route Binary MTA Press Releases 

Bus and Rail Base Fare ($) City Continuous MTA Press Releases 

Rail Actual Vehicle 

Revenue Miles 
City Continuous 

New York City 

Transit 

Rail Scheduled Vehicles 

Operating in Maximum 

Service  

City Continuous 
New York City 

Transit 

Explanatory 

Variables 

(External 

Factors) 

Bike-sharing Borough Binary Citi Bike Website 

Population (only annual 

estimates available; linear 

interpolation per month) 

Borough Continuous US Census Bureau 

Gas Price ($/gallon) City Continuous 

US Energy 

Information 

Administration 

Unemployment Rate 

(percent) 
City Continuous 

US Bureau of Labor 

Statistics 

Weather (Average 

temperature, snowfall, 

precipitation; measurement 

at Central Park) 

City 

Binary 

(Temperature); 

Continuous 

(Snow/rain) 

National Oceanic & 

Atmospheric 

Administration 

Hurricane Sandy  City Binary 
NYU Rudin Center 

Report 

  

 The first transit-related explanatory variable listed in Table 3, real-time 

information, was modeled as a binary variable for any routes with real-time information 

during each month in the three year study period.  Initially in January 2011, no routes had 

real-time information, and this gradually changed until all routes in Staten Island, the 

Bronx, and Manhattan had real-time information.  Most routes in the remaining two 

boroughs (Brooklyn and Queens) simply function as controls for the entire study period.  

 The second transit-related independent variable listed in Table 3 is average 

weekday scheduled revenue miles per bus route, and this was provided directly by the 
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transit agency.
4
  This variable is commonly used in the transit literature (see, e.g., Evans, 

2004) and is intended to represent the total amount of service on each bus route because it 

takes into account differences in frequency, span of service, and route length.  Because 

NYCT bus schedules are modified approximately once per quarter, a total of twelve 

changes in scheduled revenue miles were included in the three year panel dataset.    

 Next, the availability of Select Bus Service (SBS) on a route was considered.  

SBS service includes bus rapid transit (BRT) features, such as off-board fare collection.  

A total of six bus routes either began as SBS or were upgraded to SBS during the three 

year study period, and this was modeled with a binary variable.   

 The literature commonly cites price as a factor that can cause changes in transit 

ridership (e.g., McCollom & Pratt, 2004).  Hence, the base full fare is included as an 

independent variable.  There was only one fare change during the period of analysis, 

which occurred in March 2013 and was an increase from $2.25 to $2.50 in the base bus 

and rail fare (Metropolitan Transportation Authority, 2012b).   

 Two variables to represent the level of service on the rail system were also 

included: monthly system-wide rail revenue miles and the number of vehicles operated in 

maximum service.  These variables were included because bus riders might be choosing 

between rail and bus service, and consequently, significant changes in the provision of 

rail service might result in changes in bus ridership (Tang & Thakuriah, 2012a).  The 

effect of rail might differ from the peak periods compared to the off-peak, and for that 

reason, the second variable pertaining to maximum service was included.    

                                                 

 

 
4
 Specifically, this was weekday revenue miles when schools were open. 
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 Numerous factors external to the transit system were also considered in the 

analysis.  First, a new bike-sharing program, known as Citi Bike, was introduced in two 

boroughs (Manhattan and Brooklyn) during the last six months of the study period.  

Because this represents a new form of transportation not previously available in New 

York City, it was hypothesized that this could influence bus ridership in areas where 

bike-share facilities were available.  Consequently, the availability of bike-sharing was 

modeled as a binary variable for all bus routes in Manhattan and Brooklyn after the 

program commenced. 

 Prior research has shown that transit ridership can be dependent on changes in 

population (see, e.g., Taylor & Fink, 2003).  To account for this, annual estimates of 

borough-level population were gathered from the US Census Bureau for 2010 and 2012, 

and monthly estimates were created by linear interpolation.  Similarly, gas prices can 

influence transit demand, although the short run cross-elasticity of transit and gas price is 

typically low (Litman, 2014).  Regardless, monthly average retail gasoline price in New 

York City was included, and this was obtained from the US Energy Information 

Administration.  

 Research has also shown that variance in daily weather can impact transit 

ridership (e.g., Arana, Cabezudo, & Peñalba, 2014; Stover & McCormack, 2012).  

Therefore, weather data were gathered from the National Oceanic and Atmospheric 

Administration (NOAA) for New York, NY.  The measurements at Central Park were 

used as city-wide measurements, and temperature, precipitation, and snowfall were 

considered.  Temperature was modeled as a binary variable to represent hot and cold 

months, where a hot month was defined as one with an average temperature above 20 
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degrees Celsius (68 degrees Fahrenheit) and a cold month was one with an average 

temperature below 10 degrees Celsius (50 degrees Fahrenheit).  Precipitation was 

modeled as the total monthly precipitation in millimeters, and total monthly snowfall in 

millimeters was also included.   

 Last, a special variable was included to account for the effects of Hurricane 

Sandy, which occurred during the last week of October 2012 and significantly affected 

transit service in early November 2012.  Hurricane Sandy was modeled as a binary 

variable for all bus routes regardless of their location for November 2012.  It should be 

noted that the hurricane was also taken into account in the route-level bus ridership 

figures.  On the day the hurricane struck, transit service was suspended.  Approximately 

24 hours after the hurricane stuck, bus service resumed and was provided free of charge 

(Kaufman, Qing, Levenson, & Hanson, 2012).  The MTA did not include these days in 

the average weekday ridership data, since the method of tabulating average weekday 

ridership is based upon fare collection data.  A few days after the hurricane (in early 

November 2012), bus service resumed with usual fare collection while some subway 

service remained suspended; these days are included in the average weekday ridership 

calculations.   

Modeling Approach 

 Average weekday route-level ridership per month ( ) is considered as a function 

of the route- and time-level attributes ( ) described in the previous sections.  Using    as 

an indicator of the route     at time    , a linear regression model was estimated by 

ordinary least squares (OLS): 

                   [1] 
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where   is a vector of estimated coefficients, and     is an error term assumed to be 

independently and identically distributed (IID) with a normal distribution of mean   and 

variance  . 

 The estimates resulting from this model may be inconsistent due to unobserved 

route-level effects (thus violating the IID assumption).  For example, routes passing 

through neighborhoods of greater density or socioeconomic activity will consistently 

have higher ridership than routes in less dense or active areas.  In this case, the error term 

    is actually composed of two unobservable pieces, an individual effect    and an 

idiosyncratic error    . There are two common econometric techniques that attempt to 

separate    from    . The first is the random effects (RE), or random intercept, model: 

                    [2] 

 In the RE model, separate estimates of the variance in individual effects    and 

idiosyncratic error    are obtained; this allows for route-level intercepts         , 

where    is distributed according to    (Wooldridge, 2009).  

 A potential weakness of the RE model is that estimates obtained in this manner 

are inconsistent if the route-level effects    are correlated with the route-level attributes 

   .  For example, if high ridership routes are more or less affected by changes to fare, 

weather, or RTI, then RE estimates are potentially unreliable.  A consistent but less 

efficient model in this case is the fixed effects (FE) model,  

      
 
                [3] 

where the route-level unobserved effects    are deleted entirely from the model by 

demeaning the data. The model is less efficient as a result of sacrificing   degrees of 
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freedom to estimate the individual means  ̅  and  ̅ , and no interference from unobserved 

route-level effects remains. 

 To assess which of the RE or FE models is appropriate for the situation, a 

Hausman test can be used (Hausman and Taylor, 1981).  This formally tests the 

differences in the coefficients of the FE and RE model; if the coefficients are sufficiently 

different from each other, then the RE model is inconsistent and the FE model should be 

used.  On the other hand, if the estimates are similar then the RE model is both consistent 

and efficient. 

 Another potential threat to model inference is the possibility that the error terms 

    are serially correlated, which commonly occurs in time series analyses.  If this is the 

case, then hypothesis tests on the significance of the   estimates will be invalid.  There 

are multiple ways to account for serial correlation if it exists, and three commonly used 

methods were considered.  First, an autoregressive AR(1) term can be introduced into the 

error generating process:  

                  [4] 

where   is an estimated coefficient of the first order autoregressive process, and     is a 

residual error term assumed IID normal.  The significance of   can indicate the necessity 

of an AR structure, as a finding that     suggests that there is no autocorrelation.  

 A second, similar method is the introduction of an autoregressive moving average 

(ARMA 1,1) term, and this was used by Tang and Thakuriah (2012) in their random 

effects model.  The error generating process in this case has the following structure:  

                          [5] 

where   is another estimable coefficient.  
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 There remains a risk, however, that serially correlated residuals from an RE or FE 

model follow neither an AR nor an ARMA data generating process.  In such a case, 

hypothesis tests would be invalid.  Perhaps a more natural method of addressing issues of 

serial correlation in panel regression models is to use robust standard errors, such as those 

calculated using the Huber/White/sandwich estimator (StataCorp, 2013); these standard 

errors are robust to serial correlation within the panel, as well as heteroskedasticity.  

Results 

 In this section, the process to identify a statistically preferred model is discussed, 

and this is used to infer the relationship between RTI and observed route-level bus 

ridership. The estimated models are presented in Table 4, Table 5, and Table 6. 

Model Identification 

 First, an elementary OLS model was estimated, which is shown in the leftmost 

column of Table 4.  The results of a Lagrange multiplier test indicated that the error term 

in the OLS model exhibited systematic effects, and consequently it is necessary to 

account for route-level effects using either a RE or FE model.  

 Guided by the methodology of Tang and Thakuriah (2010), RE models were 

estimated, including two that incorporate defined patterns of serial correlation. 

Specifically, an AR(1) and ARMA(1,1) error generation process were considered, and the 

model estimates are shown in Table 4.  The RE models were estimated in R (R Core 

Team, 2013) using the package nlme (Pinheiro, Bates, DebRoy, & Sarkar, 2014).  The 

results of a likelihood ratio test indicate that the RE ARMA(1,1) model is preferred to the 

simple RE model.  
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  The models in Table 4 seek to replicate as close as was feasible the specifications 

of the Chicago model, though some changes were necessitated by constraints of data 

availability.  For example, in the Chicago model, weighted hourly frequency of bus 

service per route was included, but in New York City, revenue miles on each route were 

more readily accessible to measure transit service provision.  Other variables deemed 

necessary to adapting the framework from Chicago to New York City, such as Hurricane 

Sandy and the introduction of bike-sharing, were also included.  In summary, the model 

shown in the rightmost column of Table 4 is intended to follow that estimated for the city 

of Chicago in light of unavoidable constraints.   
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Table 4: Ordinary Least Squares and Random Effects Regression Results 

  
OLS 

Estimate 

RE 

Estimate 

RE AR(1) 

Estimate 

RE ARMA(1,1) 

Estimate 

  (SE) (SE) (SE) (SE) 

Real-Time Information 
-582.17

**
 104.99

***
 59.84 70.53 

(261.23) (35.56) (52.86) (49.34) 

Bus Service (Revenue 

Miles) 

5.51
***

 3.36
***

 3.92
***

 3.57
***

 

(0.06) (0.11) (0.13) (0.13) 

Select Bus Service 
13008.62

***
 -473.38

***
 -877.71

***
 -682.37

***
 

(594.20) (165.24) (250.60) (234.13) 

Fare ($) 
-3380.71

***
 -1670.53

***
 -2711.14

***
 -2880.50

***
 

(92.71) (200.39) (219.60) (206.28) 

Rail Revenue Miles 

(thousands) 

0.04 0.06
***

 0.07
***

 0.08
***

 

(0.20) (0.02) (0.02) (0.02) 

Rail Vehicles Operated 

in Maximum Service 

-6.14
*
 -2.84

***
 -4.23

***
 -5.22

***
 

(3.49) (0.49) (0.56) (0.54) 

Citi Bike 
1233.57

***
 -471.84

***
 -284.69

***
 -278.74

***
 

(345.81) (46.21) (65.24) (61.45) 

Unemployment Rate 
-227.23 -368.81

***
 -446.63

***
 -484.69

***
 

(241.45) (49.69) (51.43) (49.45) 

Population (thousands) 
1.73

***
 2.55

***
 2.66

***
 2.51

***
 

(0.14) (0.60) (0.65) (0.65) 

Gas Price ($) 
-523.63 -219.15

**
 -318.52

***
 -264.02

**
 

(768.91) (104.74) (104.12) (104.82) 

Cold Month 
-150.51 -270.90

***
 -187.16

***
 -145.72

***
 

(483.44) (59.25) (43.70) (40.52) 

Hot Month 
-214.94 -237.38

***
 -135.18

**
 -101.51

*
 

(619.71) (76.12) (56.45) (54.85) 

Total Monthly 

Snowfall (mm) 

-0.76 -0.84
***

 -0.60
***

 -0.45
***

 

(0.69) (0.09) (0.07) (0.07) 

Total Monthly 

Precipitation (mm) 

-0.06 -0.04
**

 -0.04
***

 -0.05
***

 

(0.14) (0.02) (0.01) (0.01) 

Hurricane Sandy 
83.9 198.77

**
 44.94 -75.1 

(828.02) (101.05) (71.03) (64.88) 

R
2
 0.62       

Adj. R
2
 0.62 

   
AIC 

 
108876.69 107160.24 106943.78 

BIC 
 

109073.88 107364.23 107154.57 

Log Likelihood   -54409.34 -53550.12 -53440.89 
***

p < 0.01, 
**

p < 0.05, 
*
p < 0.1 

Balanced panel with i=185 routes, t=36 months and N=6660 total observations. 

Monthly dummy variables are shown in the appendix. 
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 The next analysis departs considerably from the previous work by also 

considering the FE model.  Recall from the previous econometric presentation that RE 

estimates are inconsistent when unobserved route level effects are correlated with 

predictor variables, and that a Hausman test can be used to identify the proper model.  

Table 5 presents a RE model (with no adjustments for serially correlated errors) in the 

leftmost column and a FE model with identical variables adjacent.  Estimates were 

obtained using the application Stata.  It should be noted that some minor specification 

changes from the RE models shown in Table 4 were made to better fit this dataset, 

including dividing the coefficients of bus service and bike-sharing by borough.  

 A Hausman test on the two models in Table 5 rejects that the RE model is 

consistent, and therefore the FE model should be selected. To account for residual serial 

correlation, the robust standard errors (RSE) were estimated for each of the models 

shown in Table 5.  Since the robust standard errors differ from the regular standard 

errors, the robust standard errors are relied on for statistical inference on the model.  In 

summary, econometric theory and statistical tests advise that an FE model with robust 

standard errors (RSE) is preferred to the other models previously estimated in terms of 

statistical reliability and validity.  Therefore, the FE models with RSEs are relied on to 

draw conclusions about the impact of real-time information on ridership.   

 The models shown in Table 5 include the availability of real-time information as a 

single binary variable.  Because the 185 bus routes in this dataset varied greatly in terms 

of average weekday ridership from smaller local routes to major trunk routes, the FE 

model shown in Table 6 was also estimated, which divides the real-time information 
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variable into four quartiles based on the level of bus service per route.  All other variables 

were estimated in the same manner for the FE models shown in Table 5 and Table 6. 

 

Table 5: Single Real-Time Information Variable Regression Results 

 
Random Effects Estimate Fixed Effects Estimate 

  (SE) (Robust SE) (SE) (Robust SE) 

Real-Time Information 
104.954 118.278 

(35.760)*** (52.029)** (35.162)*** (52.695)** 

Bus Service in Brooklyn  
5.804 5.381 

(0.188)*** (0.543)*** (0.241)*** (0.693)*** 

Bus Service in Bronx 
6.059 5.073 

(0.227)*** (0.865)*** (0.263)*** (0.935)*** 

Bus Service in Manhattan  
5.819 3.051 

(0.264)*** (1.088)*** (0.374)*** (1.227)** 

Bus Service in Queens  
3.127 2.765 

(0.159)*** (0.926)*** (0.179)*** (1.275)** 

Bus Service in Staten Island  
0.574 0.212 

(0.183)*** (0.254)** -0.238 -0.301 

Select Bus Service 
-331.617 -262.039 

(166.210)** -443.946 -165.009 -461.757 

Fare ($) 

-1,030.88 -862.884 

(164.240)*** (103.282)*** 
(184.457)**

* 
(121.641)*** 

Rail Revenue Miles (thousands) 
0.079 0.072 

(0.021)*** (0.009)*** (0.021)*** (0.008)*** 

Rail Vehicles in Maximum Service 
-2.925 -2.566 

(0.452)*** (0.428)*** (0.453)*** (0.398)*** 

Citi Bike in Manhattan 
-467.602 -556.237 

(62.827)*** (126.536)*** (62.135)*** (143.921)*** 

Citi Bike in Brooklyn 
-376.546 -375.308 

(54.936)*** (97.277)*** (53.857)*** (96.701)*** 

Unemployment Rate 
-275.806 -243.379 

(45.289)*** (41.964)*** (48.215)*** (40.208)*** 

Cold Month 
-249.481 -249.223 

(58.040)*** (30.536)*** (56.868)*** (30.778)*** 

Hot Month 
-258.168 -246.906 

(75.470)*** (38.447)*** (73.991)*** (35.622)*** 

Total Monthly Snowfall (mm) 
-0.833 -0.819 

(0.081)*** (0.071)*** (0.079)*** (0.070)*** 

Total Monthly Precipitation (mm) 
-0.387 -0.366 

(0.158)** (0.063)*** (0.155)** (0.060)*** 

Hurricane Sandy 
212.891 206.319 

(100.157)** (51.822)*** (98.172)** (51.793)*** 

    3569.71 6425.35 

    758.52 758.52 

R
2
 0.47 0.47 

*p<0.1; **p<0.05; ***p<0.01; Monthly dummy controls in appendix; Huber-White robust standard error.  
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Table 6: Quartiles of Bus Service Real-Time Information Variable Regression Results 

 
Fixed Effects Estimate 

  (SE) (Robust SE) 

Real-Time Information on Small Routes (Q1) 
16.256 

(61.568) (62.551) 

Real-Time Information on Smaller Medium Routes (Q2) 
147.101 

(61.415)** (106.412) 

Real-Time Information on Larger Medium Routes (Q3) 
-35.114 

(64.971) (106.778) 

Real-Time Information on Large Routes (Q4) 
340.466 

(63.655)*** (124.803)*** 

Bus Service in Brooklyn  
5.376 

(0.240)*** (0.693)*** 

Bus Service in Bronx 
5.017 

(0.263)*** (0.945)*** 

Bus Service in Manhattan  
3.153 

(0.375)*** (1.229)** 

Bus Service in Queens  
2.762 

(0.179)*** (1.274)** 

Bus Service in Staten Island  
0.03 

-0.243 -0.329 

Select Bus Service 
-326.825 

(165.544)** -458.593 

Fare ($) 
-868.031 

(184.201)*** (123.463)*** 

Rail Revenue Miles (thousands) 
0.073 

(0.021)*** (0.008)*** 

Rail Vehicles in Maximum Service 
-2.564 

(0.453)*** (0.393)*** 

Citi Bike in Manhattan 
-535.102 

(62.646)*** (152.800)*** 

Citi Bike in Brooklyn 
-375.586 

(53.781)*** (96.759)*** 

Unemployment Rate 
-244.935 

(48.153)*** (40.397)*** 

Cold Month 
-247.74 

(56.788)*** (30.635)*** 

Hot Month 
-245.322 

(73.890)*** (35.529)*** 

Total Monthly Snowfall (mm) 
-0.82 

(0.079)*** (0.070)*** 

Total Monthly Precipitation (mm) 
-0.366 

(0.155)** (0.061)*** 

Hurricane Sandy 
204.454 

(98.027)** (51.790)*** 

    6393.18 

    757.37 

R
2
 0.47 

* p<0.1; ** p<0.05; *** p<0.01 

Monthly dummy controls presented in appendix.  Huber-White robust standard error. 
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Model Inference    

 In this section, the information revealed by the preferred model specifications is 

discussed.  As shown in Tables 5 and 6, the variable of interest, real-time information, 

was significant to some degree in both models.  The coefficient of the real-time 

information variable can be interpreted as the number of additional bus trips per route on 

an average weekday attributable to the deployment of real-time information.  The 

coefficient of 118  in the single variable FE model indicates that real-time information 

yields, on average, an increase of approximately 118 daily rides on routes where real-

time information was available, which is a median increase of 1.7% of route-level 

ridership.   

 However, the quartile model’s robust standard errors reveal that real-time 

information only caused a significant increase in ridership on large routes, but that the 

improvement was larger than the single variable model indicated.  On the largest quartile 

of routes (defined as having more than 1,900 revenue miles of service on an average 

weekday), real-time information increased ridership, on average, by about 340 rides per 

weekday.  This represents a median increase of 2.3% of route-level ridership on the 

largest routes.  This finding is intuitive for a few reasons: routes with lots of service may 

see a larger change simply because the existing level of service is highest, and they are 

more likely to attract “choice” trips (such as non-commute trips).  Another explanation 

may be that the ridership numbers are simply high enough to actually realize a 

quantifiable change; on small routes, a 1-2% change may only be a handful of rides per 

day, which may be lost to measurement error or overcome by statistical noise.    
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 As can be seen in Tables 5 and 6, most of the transit-related independent variables 

were significant in the FE model.  The level of bus service per route was significant, and 

it can be interpreted as the change in average weekday ridership resulting from an 

increase in revenue miles of service.  The coefficients for bus service per route were 

separated into five different variables based on the borough of each route, and these 

coefficients indicate significantly different effects on ridership by borough.  Staten Island 

had the only insignificant coefficient in the FE models.  This may be because it has the 

lowest current availability of transit service; therefore, changing the level of service may 

have little impact on ridership in this more automobile dependent borough.   

 The dummy variable for Select Bus Service (SBS) was not significant in the FE 

models when robust standard errors are observed.  It should be noted that SBS routes 

were modeled as having joint ridership with their corresponding local route (e.g. the B44 

and B44SBS were modeled as a single route) due to data constraints, and this may have 

been one reason why there was little predicted impact on ridership. 

 The coefficient for the fares variable was significant.  The value of the coefficient 

(-862.884 in the single variable model and -868.031 in the quartile model) can be 

interpreted as the change in average weekday route-level ridership associated with a one 

dollar increase in fares.   

 The two variables representing system-wide rail service were both significant.  

The total number of rail revenue miles operated per month had a coefficient of 

approximately 0.07, and this positive value suggests that as the level of overall rail 

service increases, bus ridership increases.  Perhaps this can be interpreted as overall rail 

service having a complementary relationship with bus service; for example, as rail 
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service increases, travelers in New York City become more reliant on transit, and 

consequently, increase both their rail and bus trips.  On the other hand, the variable for 

system-wide peak rail service, which was vehicles operated in maximum service, had a 

negative coefficient of approximately -2.56.  This suggests that increasing rail service in 

the peak hour may decrease bus ridership.  This substitution effect may be because 

commuters choose rail service over bus in peak periods.   

 For the external factors, the Citi Bike bike-sharing program had a significant, 

negative effect on route-level bus ridership.  The availability of bike-sharing may have 

decreased route-level bus ridership by over 500 rides per route in Manhattan, which has 

more bike-sharing stations, and approximately 375 rides per route in Brooklyn on an 

average weekday.  The decrease may be because bike-sharing provides an alternative 

mode of transportation to bus service, particularly for short trips that might be made on 

local bus routes.  However, the magnitude of this coefficient appears to be unrealistically 

large.  Performing a back of the envelop calculation to assess if all NYCT bus routes in 

Manhattan and Brooklyn experienced this level of ridership decrease reveals that a very 

large percentage (almost all) of Citi Bike’s ridership on an average weekday in 2013 

would be from former bus riders.  Therefore, further study is recommended to better 

understand the complex relationship between buses and bike-sharing. 

 Three commonly used socioeconomic variables were included in the analysis: 

unemployment rate, population and gas prices.  The unemployment rate had a significant 

negative effect on bus ridership.  Both models suggest that as unemployment rate 

increases 1%, route-level bus ridership decreases by approximately 244 rides on an 

average weekday.  This aligns with previous research that suggests as unemployment 
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increases, travelers make fewer trips on a whole, and this can have a negative impact on 

transit ridership.  The two other socioeconomic variables, gas prices and population, did 

not have a significant impact on bus ridership in the fixed effects model results, and 

consequently, they were removed from the final specification.  The cross price elasticity 

of gas prices in the short run is inelastic, so it is unsurprising that this variable was 

insignificant in the model (Litman 2014).  In terms of population, the data available was 

not at a granular level (only annual estimates by borough were available), and if there 

were more accurate reflections of population changes, this could have a more substantial 

impact on ridership.     

 Numerous weather variables were included in the model.  Both cold and hot 

temperatures appear to have caused declines in ridership, with a decrease of 

approximately 240-250 rides per route on an average weekday if the month were either 

cold or hot.  Perhaps this is because transit riders forgo unnecessary trips if the weather is 

particularly hot or cold, or they instead use other modes (such as a taxi or private 

automobile) to ensure that the entire trip was air conditioned or heated.  Both total 

monthly snowfall and total monthly precipitation had a negative impact of ridership, 

which aligns with previous literature.  The last weather variable, Hurricane Sandy, had a 

significant positive coefficient.  The two models indicate that the occurrence of the 

hurricane increased route-level bus ridership by approximately 205 to 206 rides per route 

on average weekdays in November 2012.  This is likely because sections of the rail 

system remained shut down in the immediate aftermath of the disaster, and transit riders 

instead used the bus system to travel (Kaufman, Qing, Levenson, & Hanson, 2012).     
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 Finally, the goodness-of-fit across all models is comparable, as shown by the 

similar R-squared values. It should also be noted that monthly dummy variables were 

included in the model since transit ridership exhibited strong seasonal trends, and these 

variables are shown in the appendix.   

Areas for Improvement and Future Research 

 There are a number of notable limitations to this study.  One of the most 

challenging aspects of this research design was controlling for all of the factors that 

affected route-level bus ridership during the three year study period.  For example, 

Hurricane Sandy significantly affected transit service in November 2012, but there could 

have been important lingering effects that were not captured in the model.  Similarly, 

minor changes to the transportation network in New York City (e.g. road closures, bridge 

repairs, etc.) could have influenced the level of bus ridership.   

 An interesting avenue for future research that emerged from the regression 

models pertains to the impact of bike-sharing programs on public transit ridership.  In this 

analysis, the availability of bike-sharing was simply modeled as a binary variable, despite 

varying levels of bike-sharing service along bus routes (in terms of station location and 

number of bikes), and the magnitude of the impact of the bike-sharing program on bus 

ridership appears to be unrealistically large.  Therefore, further research in this area is 

recommended, and additional studies could also evaluate the impacts on rail ridership, 

which may differ from that on bus service.   

  In terms of the modeling approach, there could be opportunities to utilize more 

sophisticated emerging techniques that consider both temporal and spatial 

autocorrelation.  Routes that intersect or parallel each other may see their ridership counts 
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move together as a result of transferring passengers or unobserved changes in local 

activity patterns.  Controlling for these endogenous or unobserved effects will be an 

important challenge.   

  This analysis focused on the overall impacts of bus real-time information on 

route-level bus ridership, but there are many interesting areas for additional analysis in 

the future.  For example, future research could segment ridership impacts between high 

and low frequency routes or peak and off-peak periods.  Additionally, expansions to 

understand the impact of real-time information on train ridership could be conducted, 

since real-time information also became available for most of the rail system during the 

study period (Mann, 2012).  Last, the impact of additional ridership from real-time 

information on farebox revenue could be assessed, and this could be compared to the 

costs of deploying and maintaining the real-time information system.   

Conclusions 

 In this study, an empirical analysis of the ridership impacts of real-time bus 

information in New York City was conducted.  Panel regression techniques were used to 

evaluate bus ridership over a three year period, while controlling for changes in transit 

service, fares, local socioeconomic conditions, weather, and other factors.  Two fixed 

effects models with robust standard errors were selected for final presentation.  The first 

model, which included real-time information as a single binary variable, showed an 

average increase of approximately 118 rides per route per weekday (median increase of 

1.7% of weekday route-level ridership) attributable to providing real-time information.  

The second model, which divided the real-time information coefficient based on quartiles 

of bus service per route, suggests that the ridership increase occurred on the largest 
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routes, which have 1900 revenue miles or more of average weekday service.  

Specifically, the model implied that real-time information increased ridership by about 

340 rides per weekday on the largest quartile of routes, which is a median increase of 

2.3% of route-level ridership.   

 Although both models present plausible results, the second model is preferable for 

two reasons.  One possible explanation why the largest routes experience a significant 

increase in ridership is that they may be more likely to attract “choice” trips (such as trips 

to go shopping or to recreational activities).  For example, when a traveler is considering 

taking a bus trip versus an alternative mode, checking real-time information for the bus 

routes with the highest service levels may reveal that a vehicle is only a few minutes 

away, and consequently, the traveler chooses to take that extra trip on the bus.  On bus 

routes with lower levels of service, the traveler may be presented with the information 

that he or she would have to wait for a longer period of time, and in that situation, the 

traveler may choose an alternative mode or forgo the unnecessary trip.  An alternative 

explanation may be that the ridership numbers are simply high enough to realize a 

quantifiable change; on small routes, a change less than 2% may only be a handful of 

rides per day, which may escape data capture or significance in the model.    

 While the second model presents a somewhat more plausible explanation of what 

is occurring in the real world, the striking similarity that the first model (with a single 

real-time information variable) has with the results of the Chicago study should be noted.  

The same unit of analysis for the dependent variable in the regression model (monthly 

average weekday bus ridership per route) was utilized, which allows for direct 

comparison between this model and the Chicago model.  Tang and Thakuriah (2012) 
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found a significant increase of 126 average weekday rides per route (approximately 1.8-

2.2% of route-level ridership) attributable to RTI.  The single real-time information 

variable fixed effects model showed an average increase of approximately 118 rides per 

route per weekday (median increase of 1.7% of weekday route-level ridership).  While a 

few limitations of the natural experiment in Chicago were previously noted, this study of 

New York City also had limitations; for example, the study period was only three years, 

and extending the panel – particularly to include the launch of real-time information in 

the remaining two boroughs – could potentially impact the final results.  Perhaps the 

similarity in these findings, despite limitations in each of the studies, suggests that bus 

ridership may increase one or two percent (holding all else equal) when passengers are 

provided with real-time information via web-enabled and mobile devices.  In light of the 

finding regarding greater impacts on bus routes with high levels of service, the potential 

generalization of this result could be limited to large bus systems, since NYCT and the 

CTA are the first and third largest bus systems, respectively, in the country based on 

unlinked passenger trips (Neff & Dickens, 2013).    

 These results, concurrent with the previous findings in Chicago, suggest that 

investments in customer information systems have had a significant impact on bus 

ridership levels, particularly for two of the country’s largest bus systems.  Therefore, this 

research has immediate implications for leaders in the transit industry making important 

decisions on how to improve America’s public transportation systems, particularly those 

agencies that face pressure to increase ridership under tight budget constraints. 
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Abstract 

 

 Public transit agencies often struggle with service reliability issues; when a bus 

does not arrive on time, passengers become frustrated and may be less likely to choose 

transit for future trips.  To address reliability issues, transit authorities have begun to 

provide real-time information (RTI) to riders via mobile and web-enabled devices.  The 

objective of this research is to quantify the benefits of RTI provided to bus riders.  The 

method used is a behavioral experiment with a before-after control group design in which 

RTI is only provided to the experimental group.  Web-based surveys are used to measure 

behavior, feeling, and satisfaction changes of bus riders in Tampa, Florida over a study 

period of approximately three months.   

 The results show that the primary benefits associated with providing RTI to 

passengers pertain to waiting at the bus stop.  Analysis of “usual” wait times revealed a 

significantly larger decrease (nearly 2 minutes) for RTI users compared to the control 

group.   Additionally, RTI users had significant decreases in levels of anxiety and 

frustration when waiting for the bus compared to the control group.  Similarly, they had 

significant increases in levels of satisfaction with the time they spend waiting for the bus 

and how often the bus arrives at the stop on time.  Taken together, these findings provide 
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strong evidence that RTI significantly improves the passenger experience of waiting for 

the bus, which is notoriously one of the most disliked elements of transit trips.  The 

frequency of bus trips and bus-to-bus transfers were also evaluated during the study 

period, but there were no significant differences between the experimental and control 

groups.  This is not surprising since the majority of bus riders in Tampa are transit-

dependent and lack other transportation alternatives.    

 The primary contribution of this research is a comprehensive evaluation of the 

passenger benefits of RTI conducted in a controlled environment.  Moreover, this 

research has immediate implications for public transit agencies – particularly those 

serving largely transit-dependent populations – facing pressure to improve service under 

tight budget constraints.     

Introduction 

 

 Public transit plays a vital role in urban transportation systems.  Transit helps to 

reduce carbon dioxide emissions, decrease gasoline consumption, and combat roadway 

congestion in metropolitan areas (Schrank, Eisele, & Lomax, 2012).  It is one of the 

safest modes of passenger transport, as evidenced by low passenger fatality rates (Neff & 

Dickens, 2013).  Other benefits of transit include providing mobility options for those 

who cannot or choose not to drive (American Public Transportation Association, 2014) 

and public health benefits associated with active lifestyles (e.g. Besser & Dannenberg, 

2005). 

 Despite its benefits, transit agencies in many American cities struggle to compete 

with other modes of passenger transportation, especially single-occupancy motor 

vehicles.  To be a viable option when compared to alternatives, transit service must be 
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fast, frequent, and reliable, among other things (Walker, 2012).  Reliability can be 

improved in many ways, including: increasing levels of right of way, such as providing a 

dedicated lane; using service planning approaches, such as adding slack to scheduled 

running times; or implementing control strategies, such as holding vehicles that are ahead 

of schedule.  While these supply-side strategies can be effective at improving reliability, 

they often come at a substantial cost.  

 Recently, a demand-side strategy has emerged that can improve the perception of 

reliability: providing real-time vehicle location and/or arrival information helps 

passengers adapt to unreliability of transit service (Carrel et al., 2013).  Moreover, real-

time information (RTI) can be provided to passengers in an increasingly cost-effective 

manner, particularly when agencies take an “open data” approach.  “Open data” means 

that the transit authority makes their service information freely available to the general 

public in a computer-readable format (Barbeau, 2013; Wong, Reed, Watkins, & 

Hammond, 2013).  This information can be used by third-party software developers to 

create transit “apps,” often at little-to-no additional cost to the agency.  The rapid 

adoption of mobile devices makes this third-party information dissemination channel 

directly accessible to an increasing number of riders (Schweiger, 2011).  This trend has 

occurred so rapidly in the United States that, in December of 2012, the president of the 

American Public Transportation Association said that “the proliferation of transit apps is 

one of the most exciting things to happen to this industry” (Mann, 2012). 

 In light of this, decision-makers at the country’s transit providers want to 

understand the impacts of RTI, and this research aims to provide a comprehensive 
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controlled study of the benefits of providing RTI to riders via web-enabled and mobile 

devices.    

Literature Review 

 

 There is a growing body of research that aims to understand the rider benefits of 

RTI.  An early segment of this research focused on the impacts of RTI displayed on 

signage at stops or in stations (e.g., Hickman & Wilson, 1995; Dziekan & Kottenhoff, 

2007; Politis, Papaioannou, Basbas, & Dimitriadis, 2010).  Recently, the literature has 

expanded to include the provision of RTI through web-enabled and/or mobile devices.  

Many of the initial studies of RTI provided via personal devices relied heavily on stated 

preference and/or simulation methods to evaluate possible impacts (e.g., Caulfield & 

Mahony, 2009; Tang & Thakuriah, 2010).  Given the recent widespread availability of 

RTI applications throughout the country, there is a growing subset of the literature that 

uses actual behavioral data to understand rider benefits, and it is the focus of this review.  

Based on prior behavioral studies, the following key benefits of RTI were identified: (1) 

decreased wait times, (2) increased satisfaction with transit service, and (3) increased 

ridership.  The following review includes discussion of each one of these impacts, a 

summary of the rider benefits of RTI, and a brief review of behavioral experiments in 

public transit.   

Decreased Wait Times and Feelings Experienced While Waiting 

 When passengers utilize RTI, they can time their departure from their origin to 

minimize their wait time at stops or stations; moreover, RTI can reduce their perception 

of the length of wait times.  In Seattle, Washington, a recent study found that bus riders 

with RTI had actual wait times that were almost two minutes less than those of non-users, 
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and perceived wait times of RTI users were approximately 30% less than those who did 

not use RTI (Watkins, Ferris, Borning, Rutherford, & Layton, 2011).   

 Because passengers spend less time waiting at stops and stations, RTI may 

increase passenger perceptions of personal security when riding transit, particularly at 

night.  A panel study conducted at the University of Maryland measured changes before 

and after the implementation of a RTI system on the university shuttle bus network, and 

the results revealed that passengers reported increased levels of perceived personal 

security at night attributable to RTI (Zhang, Shen, & Clifton, 2008).  Two web-based 

surveys of RTI users conducted in Seattle, Washington provide additional evidence that 

RTI may increase self-reported levels of personal security.  In the first survey, conducted 

in 2009, 18% of respondents reported feeling “somewhat safer” and another 3% felt 

“much safer” as result of using RTI (Ferris, Watkins, & Borning, 2010).  In 2012, a 

follow-up web-based survey in Seattle found over 32% of RTI users had a positive shift 

in their perception of personal security (Gooze, Watkins, & Borning, 2013). 

 In addition, prior studies have aimed to assess changes in other feelings while 

waiting for the bus, including aggravation, anxiety and relaxation.  The previously 

mentioned University of Maryland panel study evaluated levels of anxiety while waiting 

for the bus but did not find a significant decrease associated with the use of RTI (Zhang 

et al., 2008).  Similarly, the Seattle study of wait times evaluated passenger levels of 

aggravation and relaxation while waiting, but the results showed no significant difference 

between the RTI users self-reported aggravation levels and that of those without RTI 

(Watkins et al., 2011).   
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Increased Satisfaction with Transit Service 

 In theory, if transit passengers spend less time waiting (or perceive waiting time 

to be less), it follows that they may feel more satisfied with overall transit service.  The 

University of Maryland study found a significant increase in overall satisfaction with 

shuttle bus service attributable to RTI (Zhang et al., 2008).  Additionally, in the 2009 

web-based survey of RTI users in Seattle, 92% of respondents stated that they were either 

“somewhat more” satisfied or “much more” satisfied with overall transit service, and the 

follow-up 2012 survey of RTI users found similar results (Ferris et al., 2010; Gooze et 

al., 2013).  

Increased Ridership and Transfers 

 If passengers spend less time waiting and/or are more satisfied with overall transit 

service, then the provision of RTI may also cause an increase in the frequency of transit 

trips by existing riders or potentially attract new riders to transit.  In Seattle, the two web-

based surveys of RTI users previously discussed found that approximately one third of 

riders reported an increase in the number of non-work/school trips per week made on 

transit because of RTI (Ferris et al., 2010; Gooze et al., 2013).  On the other hand, the 

University of Maryland study also evaluated frequency of travel on the university shuttle 

bus system but concluded that RTI did not cause an increase in shuttle bus trips (Zhang et 

al., 2008).  Last, an empirical evaluation of Chicago bus ridership found a “modest” 

increase in overall route-level ridership (precisely 126 rides per route per day, which is 

1.8-2.2% of average route-level weekday bus ridership) attributable to real-time bus 

information (Tang & Thakuriah, 2012).    
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 If passengers take more trips on transit, they may also increase the number of 

transfers they make between transit routes. Similarly, if RTI reduces the perception of the 

length of wait times, it could also reduce the perception of transfer times, potentially 

leading to an increased willingness to transfer.  In a follow-up study in Chicago, the 

impacts of bus RTI on rail ridership were evaluated, and the results showed a small 

increase in rail ridership (0.3% of the average weekday train station-level ridership) 

attributable to bus RTI.  The authors argue that this increase in rail ridership may be due 

to increased intermodal transfer efficiency between buses and trains, which suggests a 

complementary effect of the provision of bus RTI on connected rail service (Tang, Ross, 

& Han, 2012). 

Summary of the Rider Benefits of Real-Time Information  

 Based on this literature review of studies evaluating transit rider behavior, several 

potential benefits of providing RTI to transit riders were identified.  First, RTI may be 

associated with a decrease in the wait times (both actual and perceived) of riders.  

Second, riders using RTI may report increased levels of personal security while riding 

transit, likely because they can reduce their wait times at bus stops.  Third, RTI use may 

be associated with changes in levels of aggravation, anxiety and/or relaxation while 

waiting for the bus, although most prior studies have not found significant changes in 

these feelings.  RTI use may also result in higher levels of satisfaction with overall transit 

service.  Last, RTI users may increase their frequency of transit trips, as well as their 

frequency of transferring. 

 It should be noted that the majority of these behavioral studies of RTI were 

conducted in two large American cities (Seattle and Chicago) that have extensive bus 
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systems.  The Chicago Transit Authority and King County Metro in Seattle operate the 

second and seventh largest American bus systems, respectively, based on passenger miles 

(Neff & Dickens, 2013).  Given the sheer size of these networks, they differ from many 

other American bus systems in their level of service provision (namely frequency of 

service and/or origin-destinations served), as well as the demographics of transit riders 

that include relatively high level of “choice” riders (ORC, 2011; Zhao, Webb, & Shah, 

2014).  Evaluation of the benefits of RTI in a mid- or small-sized transit system may find 

different levels of benefits.     

 Finally, it should be noted that there may be other rider benefits associated with 

the use of RTI (e.g. route choice to minimize travel time), but prior research has largely 

relied on stated preference or simulation methods (e.g., Cats et al., 2011; Fonzone & 

Schmöcker, 2014).  Therefore, this study focuses on the benefits grounded in actual 

behavioral studies to provide a framework for evaluation of RTI in a controlled 

environment.   

Controlled Behavioral Experiments Involving Transit Riders 

  Controlled behavioral experiments are an established methodology in the social 

sciences to understand the impact of a treatment variable on study participants while 

controlling for other environmental effects (Campbell & Stanley, 1963).  Despite this, the 

practice of performing true behavioral experiments to evaluate traveler behavior is 

somewhat limited.  A few recent studies that specifically evaluate transit traveler 

behavior include Fujii & Kitamura (2003), who evaluated drivers’ habits and attitudes 

toward public transit before and after giving them a treatment of a free one month bus 

pass, and Rodriguez & Rogers (2014), who conducted an experiment involving 
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information about accessibility to transit and its effects on university student housing 

location choices.  To the best of the authors’ knowledge, there have not been any prior 

controlled behavior studies evaluating the impacts of RTI or mobile applications 

providing transit information to travelers.   

Methodology 

 

 A controlled behavioral experiment was conducted in Tampa, Florida to evaluate 

the benefits of providing RTI to transit riders.  Tampa was selected as the location for this 

study for two reasons.  First, the transit provider in Tampa, the Hillsborough Regional 

Transit Authority (HART), operates a bus service of approximately 27 local and 12 

express bus routes (HART, 2013a) and had a FY2013 annual ridership of approximately 

14.6 million bus trips (HART, 2013b).  Therefore, this small-sized transit system differs 

from the prior studies of larger systems (Seattle and Chicago).  Notably, the 

demographics of HART’s ridership are largely transit-dependent users; their most recent 

system-wide survey showed that 56% of riders do not have a valid driver’s license and 

66% live in households without cars (Tindale-Oliver & Associates, 2010). 

More importantly, Tampa offered a unique opportunity to provide RTI to only a 

controlled subset of transit riders.  HART outfitted all of their buses with automatic 

vehicle location (AVL) equipment in 2007, but initially implemented the system for 

operational purposes only and did not share RTI with riders.  In 2012, the agency granted 

the authors special access to their real-time bus data in order to develop a RTI system for 

riders.  Since there were no other means for HART riders to access RTI, a controlled 
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environment was available for experimentation.
5
  The transit agency and the authors 

decided to pursue a small-scale launch of the RTI system, which provided a limited time 

to conduct a research study that restricted access of RTI to a small group of participants.  

In light of the opportunity to expose a controlled population to RTI without other 

interference (i.e. the launch of other transit agency developed applications or the public 

release of open real-time data), a behavioral experiment was selected as the methodology 

for this study.   

Experimental Design 

 The specific method utilized was a before-after control group research design 

(Campbell & Stanley, 1963).  The treatment in this experiment was access to RTI over a 

study period of approximately three months.  The method of measuring rider behavior, 

feeling, and satisfaction changes was two web-based surveys: one administered before 

RTI and another after the completion of the study period.   

Recruitment 

 The “before” survey was conducted in February 2013 during a two week period.  

HART bus riders were recruited to participate in the study through a link posted on the 

homepage of the transit agency website, as well as through the transit agency email list 

and other local email lists.  Interested riders could enter a publically accessible link to the 

web-based survey software, and on the pre-wave survey, all respondents were asked to 

                                                 

 

 
5
 In 2012, HART installed a small two-line LED sign system for estimated arrival 

information that was intermittently functional.  To the best of the authors’ knowledge, the 

LED signs were only operational at one stop (Marion Transit Center) during the 

experiment. 
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provide an email address in order to contact them for follow-up and the “after” survey.  

An incentive of a free one day bus pass was provided to all pre-wave survey participants 

to help increase the response rate.  Respondents were then randomly assigned to the 

control group and the experimental group.  Then, the experimental group was emailed 

instructions explaining how to use RTI, and they were instructed not to share RTI with 

anyone during the study period.  After approximately three months, the after survey was 

administered during the last two weeks of May 2013.  A second incentive of a free one 

day bus pass was provided to all participants (both the control and experimental groups) 

to help increase the response rate of the post-wave survey.   

Treatment 

 The treatment in this experiment was exposure to RTI.  RTI was provided to 

riders through a transit traveler information system known as OneBusAway.  

OneBusAway was originally developed in 2008 at the University of Washington to 

provide real-time bus arrival information for riders in greater Seattle.  Over its five years 

in existence in the Puget Sound region, OneBusAway has increased in utilization to 

become a proven platform, currently hosting more than 100,000 unique users per week.  

More importantly, OneBusAway was developed as an open-source system, which allows 

others to adapt the code for their own transit systems.   

 Five OneBusAway interfaces were developed for Tampa and made available to 

the experimental group: a website, two mobile websites for internet-enabled mobile 

devices (one text-only and the other optimized for smartphones), a native Android 

application, and a native iPhone application (see screenshots in Figure 4).  For the three 

websites, access was limited by only providing the web address to the experimental 
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group.  For the two smartphone applications, participants in the experimental group were 

instructed to download the OneBusAway application from Seattle and change the settings 

for the OneBusAway server application programming interface (API) from Seattle to 

Tampa.  An example of the setting change is shown in the rightmost screenshot in Figure 

4.   

 

 
Figure 4: Screenshots of the OneBusAway Tampa iPhone Application, Android 

Application, and Setting Changes to Limit Access (shown for Android) 

 

 

Survey Content 

 To measure behavior, feeling, and satisfaction changes, the survey instruments 

contained identical questions in the pre-wave and the post-wave surveys for both the 

control and experimental groups.  Transit travel behavioral questions included the 

number of trips on HART buses in the last week and the number of transfers between 

HART bus routes in the last week.  To assess wait times, respondents were asked about 



 64 

their “usual” wait time on the route that they ride most frequently.  Participants were also 

asked questions about eight feelings while waiting for the bus, and they rated them on a 

five point Likert scale.  Specifically, they were asked about three feelings discussed in the 

prior literature (relaxed, anxious and safety at night and during the daytime), and a minor 

alteration was made to a fourth (aggravation was changed to frustration).  Additionally, 

three feelings were included that could change due to the availability of RTI: bored, 

productive and embarrassed.  It was hypothesized that riders may feel bored or 

unproductive while waiting for the bus, but those who checked RTI could experience 

decreases in these feelings; similarly, passengers might be embarrassed to stand on street 

corners waiting for the bus for extended periods of time and, if this were the case, those 

who use RTI may experience a decrease in this feeling.  To assess satisfaction, all 

participants were asked to rate their level of satisfaction with overall transit service on a 

five point Likert scale.  Because the transit customer research literature typically breaks 

down satisfaction ratings into specific elements of service provision (e.g., Eboli & 

Mazzulla, 2007), five indicators of certain elements of transit service were also included.  

One of these indicators was specifically targeted at passenger wait times: “how long you 

have to wait for the bus.”  Two indicators aimed to capture reliability of the transit 

service: “how often the bus arrives at the stop on time” and “how often you arrive at your 

destination on time.”  The last two indicators represented frequency of service and 

transferring, respectively: “how frequently the bus comes” and “how often you have to 

transfer buses to get to your final destination.”  

 In addition to the questions that were asked of both the control and experimental 

groups in the before and after surveys, a series of questions was added to the post-wave 
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survey of the experimental group to assess if RTI users perceived a change in their travel 

behavior, satisfaction, and feelings.  This was specifically done because two prior studies 

in the Seattle area asked RTI users to self-report changes (Ferris et al., 2010; Gooze et al., 

2013), and asking these perception questions allows for comparison with the previously 

mentioned questions asked on both the pre-wave and post-wave surveys.  

 It should also be noted that standard socioeconomic characteristics were asked to 

understand the representativeness of the survey participants; similarly, participants were 

asked which information and communication technologies they use.  Finally, after 

composing the survey instruments, they were pre-tested on a group of a dozen students 

and staff at Georgia Tech and reviewed by customer research employees at HART.   

Sample Size 

 The sample sizes for the before and after surveys are shown in Table 7.  A total of 

534 people initially entered the link to the survey software, and of these, 452 responses 

included a unique email address, which was necessary to contact participants for the post-

wave survey.  These 452 usable responses were then divided into the control and 

experimental groups using a random number generator.  59% of the usable experimental 

group and 60% of the usable control group sufficiently completed the post-wave survey, 

which resulted in a final sample size of 268 participants.    

 A key challenge to conducting this controlled behavioral experiment was limiting 

access of OneBusAway to only the experimental group.  As can be seen in Table 7, some 

contamination of the control group occurred because 24 participants figured out how to 

access OneBusAway, mostly by searching the internet sufficiently to find the website 

(14/24) or receiving instructions from family/friends (8/24).  Similarly, there were some 
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members of the experimental group (27 total) that never used OneBusAway during the 

study period.  The most common reason for not using OneBusAway was not having a 

smartphone (12/27), and other common reasons included not riding the bus, not needing 

it, and not having time to read instructions.  Due to their deviation from random 

assignment, the contaminated control group and experimental non-user group were not 

given the complete post-wave survey.  Therefore, the results presented in the following 

sections include only the clean control group (107) and the clean experimental group 

(110).  Last, the socioeconomic characteristics of the clean control and experimental 

groups were compared to assure that the usable sample remained equivalent after 

attrition.  As shown in Table 8, the groups were not statistically different in age, annual 

household income, gender, employment status, household car ownership, and having a 

driver’s license, but they differed in ethnicity (p=0.002). 

 

Table 7: Sample Size 

  

Before Survey* After Survey** 

Began 

Survey 

Usable 

Sample 

Size 

Sample Size of 

OneBusAway 

Users 

Sample Size 

of Non-

Users 

Sample 

Size 

Total 

Percent of 

Before Usable 

Sample 

Experimental Group 
534 

229 110 27 137 59% 

Control Group 223 24 107 131 60% 

Total 534 452 134 134 268 59% 

*Only participants who provided a unique email address and were 18+ years of age were deemed usable 

**Only participants responding to at least 50% of the questions were included in the final sample 
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Table 8: Socioeconomic Characteristics of the Control and Experimental Groups 

 Control Group Experimental 

Group 

Total 
Category Variable # %* # %* # %* 
Total All Respondents 107 100% 110 100% 217 100% 

Age 

Age 18-24 10 9% 11 10% 21 10% 
Age 25-34 24 22% 23 21% 47 22% 
Age 35-44 24 22% 29 26% 53 24% 
Age 45-54 27 25% 30 27% 57 26% 
Age 55-64 16 15% 15 14% 31 14% 
Age 65-74 5 5% 1 1% 6 3% 
Age 75 and over 1 1% 0 0% 1 0% 
No Answer 0 0% 1 1% 1 0% 

Wilcoxon Sum Rank Test: W=6124.5, p-value=0.514 

Annual 

Household 

Income 

Under $5,000 9 8% 10 9% 19 9% 
$5,000 to $9,999 9 8% 11 10% 20 9% 
$10,000 to $19,999 23 21% 13 12% 36 17% 
$20,000 to $29,999 14 13% 28 25% 42 19% 
$30,000 to $39,999 13 12% 14 13% 27 12% 
$40,000 to $49,999 8 7% 10 9% 18 8% 
$50,000 or more 27 25% 18 16% 45 21% 
No Answer 4 4% 6 5% 10 5% 

Wilcoxon Sum Rank Test: W=5599, p-value=0.568 

Household 

Car 

Ownership 

No cars 53 50% 59 54% 112 52% 
1 car 30 28% 27 25% 57 26% 
2 cars 19 18% 18 16% 37 17% 
3 or more cars 4 4% 6 5% 10 5% 
No Answer 1 1% 0 0% 1 0% 

Wilcoxon Sum Rank Test: W=5971.5, p-value=0.737 

License 

Has a valid license 71 66% 83 75% 154 71% 
No license 35 33% 27 25% 62 29% 
No Answer 1 1% 0 0% 1 0% 

Kruskal-Wallis Test: Chi-squared=1.885, p-value=0.170 

Gender 

Male 53 50% 45 41% 98 45% 
Female 54 50% 64 58% 118 54% 
No Answer 0 0% 1 1% 1 0% 

Kruskal-Wallis Test: Chi-squared=1.475, p-value=0.225 

Employ-

ment 

Status 

Employed Full Time 57 53% 63 57% 120 55% 
Employed Part Time 17 16% 14 13% 31 14% 
Not Employed 7 7% 11 10% 18 8% 
Retired 6 6% 4 4% 10 5% 
Student 13 12% 13 12% 26 12% 
Other (disabled, etc.) 4 4% 2 2% 6 3% 
No Answer 3 3% 3 3% 6 3% 

Kruskal-Wallis Test: Chi-squared=0.377, p-value=0.542 

Ethnicity 

** 

White 75 70% 54 49% 129 59% 
Black/African American 19 18% 26 24% 45 21% 
Hispanic or Latino 5 5% 19 17% 24 11% 
Asian 0 0% 1 1% 1 0% 
Other 8 7% 9 8% 17 8% 
No Answer 0 0% 1 1% 1 0% 

Kruskal-Wallis Test: Chi-squared=9.546, p-value=0.002 
*Figures rounded to the nearest percent. **Multiple responses included in Other. 
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Results 

 

 The results of this behavioral experiment are divided into four sections.  The first 

three sections evaluate changes in behavior, feeling, and satisfaction using identical 

questions posed on both the pre-wave and post-wave surveys.  The fourth section 

assesses the questions that were only asked of the experimental group in the post-wave 

survey.   

Behavior Changes 

 Three measures of behavior change were evaluated: trip frequency, transfer 

frequency and wait time.  To measure differences in transit trip frequency associated with 

RTI use, all respondents were asked how many trips on HART buses they made in the 

last week.  Similarly, to measure changes in transit transfer frequency, respondents were 

asked how many of their trips in the last week included a transfer from one HART bus 

route to another bus route.  Riders were also asked which HART bus route they traveled 

on most frequently and what their “usual” wait time was on that route.  Then, for each of 

the three measures, the gain score, or difference (D), from the before survey (Y1) to the 

after survey (Y2) was calculated for each individual as follows: D = Y2 – Y1.  The mean 

(M) and standard deviation (SD) of the before survey, after survey, and gain scores for 

the number of trips per week, number of transfers per week, and “usual” wait times are 

shown in Table 9 for the control group and the experimental group.   

 Table 9 shows that all three variables had, on average, a decrease from the before 

to the after survey for both the control and experimental groups.  The difference in the 

mean gain scores between the control group and the experimental group was not 

significant for bus trips per week (t=0.66, p=0.512) nor was it significant for transfers per 
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week (t=0.37, p=0.715).  On the other hand, the mean gain score of the usual wait time 

for the experimental group (-1.79 minutes) was significantly different (t=2.66, p=0.009 < 

0.01) from the control group (-0.21 minutes).  This implies that the experimental group 

experienced a decrease in “usual” wait times approximately 1.5 minutes greater than they 

would have without RTI.    

 In theory, the research design should control for other changes affecting travel 

behavior, since such changes could be expected to occur similarly for members of both 

the experimental and control groups.  This assumption was directly investigated to 

understand potential threats to internal validity.  Differences in the frequency of transit 

trips and transfers may be caused by changes in automobile ownership, availability of a 

driver’s license, household and work location, among other things.  Therefore, all 

participants were asked if they bought/sold a car, got/lost a driver’s license, moved 

household locations, or changed work/school locations during the study period.  A total 

of 50 participants (24 in the control group; 26 in the experimental group) had one or more 

of these socioeconomic changes during the study period.  Then, participants who had 

these changes (plus 3 who did not answer the questions) were removed from the 

calculations.  The difference of mean gain scores between the remaining participants in 

the control group and experimental group was again not significant for bus trips per week 

(t=-0.37, p=0.712) or transfers per week (t=0.36, p=0.721).  These results support the 

previous results shown in Table 9. 

 Similarly, prior transit research has shown that expected wait times are a function 

of the frequency and reliability of the transit service (Furth, Hemily, Muller, & 

Strathman, 2006).  Therefore, participants were asked what bus route they ride most 
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often. 38 participants (20 in the experimental group; 18 in the control group) reported 

changing their usual route during the study period.  When the participants who changed 

bus routes were removed from the usual wait time calculations (plus 9 who did not 

answer the question), the difference between the mean gain scores of the usual wait time 

for the experimental group (-1.97 minutes) and the control group (-0.01 minutes) was 

nearly 2 minutes and was significantly different (t=3.02, p=0.003 < 0.01).
1
 

 A few caveats about this analysis should be made.  First, the difference of means 

test assumes that the variables (difference in trips/week, transfers/week, and usual wait 

time) are continuous.  To lessen the burden of survey participation on the respondents, 

these questions were posed with multiple choice answers that were capped on the high 

end (trips/week ranged from 0 to 11 or more trips; transfers/week from 0 to 11 or more 

transfers; usual wait time from 0 to more than 15 minutes).  Therefore, this analysis 

decreases the impact of extreme values (trips/transfers more than 12 per week and usual 

wait times above 15 minutes).   

 Additionally, it is important to note that the one positive finding (usual wait time) 

relied completely on self-report data, but prior research has shown that self-reported wait 

times may not align with actual wait times due to the perception of time (Watkins et al., 

2011a).  Accordingly, the finding that the usual wait times of RTI users were less than the 

usual wait times of non-users could be interpreted as either a change in actual wait time 

                                                 

 

 
1
 Regression models of the gain scores of trips/week, transfers/week, and usual wait time 

were also created to understand the extent to which the experimental design “controlled” 

for other factors.  The results do not differ substantially from the simple t-statistics. The 

regression models are included in the appendix. 
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or a change simply in the perception of wait time attributable to RTI.  The proportion of 

the reported change in wait time attributed to perceived or actual changes in wait time 

cannot be known without independent observations of passenger wait times. 

Feelings Experienced While Waiting  

 Identical questions were posed to participants in the pre-wave and post-wave 

surveys to evaluate potential changes in feelings while waiting for the bus.  These 

questions quantify the frequency that a respondent experienced specific feelings while 

waiting for the bus on the following five-point scale: never, rarely, sometimes, 

frequently, and always.  Eight different indicators were used: bored, productive, anxious, 

relaxed, frustrated, embarrassed, safe at night and safe during the day.  Similar to the 

previous section, the gain score, or difference (D), from the before survey (Y1) to the 

after survey (Y2) was calculated for each individual as follows: D = Y2 – Y1.  Since each 

feeling was rated on a five-point scale, the differences ranged from -4 to 4.  The gain 

scores were then used in a Wilcoxon rank sum test to evaluate any differences between 

the control group and the experimental group, and the results are shown in the rightmost 

column of Table 10.  Additionally, the percent of respondents experiencing these feelings 

more than average (either “frequently” or “always”) for the control group and the 

experimental group on the before survey and the after survey is shown in Table 10. 

 Table 10 shows that four feelings (productive, anxious, frustrated, and safe during 

the day) had significant differences from the pre-wave to the post-wave survey between 

the control group and the experimental group.  Feeling “productive” while waiting for the 

bus increased from 10% of the experimental group in the pre-wave survey to 17% in the 

post-wave survey (combined total of “frequently” and “always”), and this was 
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significantly different from the control group (p=0.051).  This may be because RTI users 

have better knowledge of how long they will be waiting, which helps them to choose an 

activity (e.g. reading, sending emails) that is a good fit for the amount of time they will 

be waiting, as opposed to simply passing the time idly.  Second, the experimental group 

had a small decrease in the frequency with which they feel “anxious” while waiting for 

the bus, which was somewhat different from the control group (p=0.082).  Providing RTI 

to passengers may help them to feel as if they have more control over their trip (Watkins 

et al., 2011) and reduce their level of anxiety when waiting for the bus.  Notably, the 

experimental group decreased their frequency of feeling “frustrated” when waiting for the 

bus (from 25% to 18%; combined total of “frequently” and “always”), and this was 

significantly different from the control group (p=0.006).  One possible explanation of this 

is that RTI decreases the perception of unreliability of transit service and enables riders to 

adjust their behavior when service is delayed.  This may be particularly important for 

riders who are dependent on the transit system and do not have other alternatives readily 

available.       

 Additionally, feelings of safety during the daytime significantly increased for the 

experimental group compared to the control group (p=0.035).  This may be because 

passengers spend less time waiting on street corners where they feel exposed to passing 

traffic or personal crime.  Furthermore, at less popular stops, passengers may find 

themselves waiting alone, and feel unsafe compared to when they are on a transit vehicle 

with other passengers.  It is interesting to note that feelings of safety at night did not have 

a significant difference between the two groups.  There are two likely explanations for 

why this may not have occurred.  First, the pre-wave survey was conducted in February, 
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when daylight hours are short, whereas the post-wave survey was conducted in May, 

when days are much longer and the evening peak commute occurs in daylight.  Because 

of the seasonal differences, regular commuters may not have experienced as many trips 

during darkness, and therefore may not have had the opportunity to perceive a change in 

feelings of safety at night.  An alternative explanation is that most RTI users are carrying 

a smartphone, which is a common item targeted by thieves (even resulting in the term 

“Apple-picking” as a common crime in most transit systems).  Therefore, RTI users may 

feel more susceptible to petty theft if they use their smartphones to check RTI at night.   

 The three remaining feelings (bored, relaxed and embarrassed) did not have a 

significant difference between the mean gain scores of the control and experimental 

groups.  Regarding levels of relaxation, it was originally hypothesized that those who 

decreased their levels of frustration or anxiety would have similar increases in levels of 

relaxation while waiting, but this did not occur.   
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Table 9: Mean (M), Standard Deviation (SD), and Difference of Mean Gain Scores for Trips, Transfers and Wait Time 

  Control Group Experimental Group Diff. of Mean Gain Scores 

  Sample Before After Difference Sample Before After Difference Two-tailed    

  n M (SD) M (SD) M (SD) n M (SD) M (SD) M (SD) t-stat p-value   

Trips/Week 107 
7.03 6.63 -0.40 

110 
7.09 6.40 -0.69 

0.66 0.512 
  (3.79) (4.09) (2.63) (3.94) (3.71) (3.76) 

Transfers/Week 88 
4.53 4.35 -0.18 

94 
4.26 3.87 -0.38 

0.37 0.715 
  (4.15) (3.90) (3.77) (3.93) (3.33) (3.63) 

Usual Wait 

Time (minutes) 
102 

10.71 10.50 -0.21 
107 

11.36 9.56 -1.79 
2.66 0.009 *** 

(3.88) (4.25) (4.42) (4.06) (4.68) (4.21) 

Significance: * p<0.10; ** p<0.05; *** p<0.01 

 

 

Table 10: Percent Frequently or Always and Wilcoxon Rank Sum Test for Change in Feelings while Waiting for the Bus 

  Control Group Experimental Group Diff. in Gain Scores 

  Sample Before After Sample Before After Wilcoxon Test 

  
n 

% Frequently 

+ Always 

% Frequently 

+ Always 
n 

% Frequently 

+ Always 

% Frequently 

+ Always 
W p-value   

Bored 103 49% 45% 107 31% 30% 4864 0.112   

Productive 102 11% 10% 106 10% 17% 6201 0.051 * 

Anxious 99 18% 19% 106 26% 25% 4547.5 0.082 * 

Relaxed 101 34% 34% 105 27% 25% 5518 0.592   

Frustrated 103 24% 26% 104 25% 18% 4240.5 0.006 *** 

Embarrassed 100 3% 7% 103 3% 7% 4808.5 0.346   

Safe at night 97 36% 35% 105 24% 24% 5104.5 0.976   

Safe during the day 103 73% 67% 104 72% 73% 6185 0.035 ** 

Significance: * p<0.10; ** p<0.05; *** p<0.01             
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Satisfaction 

 Six indicators asked about specific aspects and overall service of HART buses, 

and each indicator was rated on the following five-point scale: very dissatisfied, 

somewhat dissatisfied, neutral, somewhat satisfied, and very satisfied.  Again, the gain 

score, or difference (D), from the before survey (Y1) to the after survey (Y2) was 

calculated for each individual as follows: D = Y2 – Y1.  Since the indicators were rated on 

a five-point scale, the differences ranged from -4 to 4.  The gain scores were then used in 

a Wilcoxon rank sum test to evaluate any differences between the control group and the 

experimental group, and the results are shown in the rightmost column of Table 11.  

Additionally, the percent satisfied (either “somewhat” or “very”) for the control group 

and the experimental group is shown for the before survey and the after survey in Table 

11.   

 Two of the variables (how long you have to wait for the bus and how often the 

bus arrives at the stop on time) increased significantly from the before to the after survey 

between the control group and the experimental group.  This may be because RTI users 

are able to time their arrival at the bus stop to decrease how long they have to wait for the 

bus, which may also lead to increased levels of satisfaction with how long they have to 

wait for the bus.  Additionally, RTI may also change a passenger’s perception of a 

vehicle arriving on time at the stop.  Because passenger with RTI know when the vehicle 

is running late, they may not perceive the bus as being “late” and may be more satisfied 

with how often the bus arrives at the stop according to the posted schedule.  These two 

variables directly support the “usual” wait time analysis discussed in a previous section.   
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 Both the indicators for frequency of service and arriving at a final destination on 

time did not have significant changes between the experimental group and the control 

group.  Since the frequency of HART bus service did not change over the study period, it 

is reasonable that there were not changes in satisfaction with frequency.  Similarly, RTI 

should not, in theory, impact the final time that passengers arrive at their destination, 

unless they change routes/paths, which is unlikely in a sparse transit network like 

Tampa’s.  It is therefore logical that this indicator did not change.  Similarly, there was 

not previously a difference in the number of transfers associated with using RTI, and 

therefore, it also is reasonable that satisfaction with the number of transfers did not 

change. 

 Finally, it was surprising that the analysis of overall HART bus service did not 

show a significant change between the control and experimental groups.  It was 

envisioned that since passengers are more satisfied with waiting times – which are 

notoriously one of the most onerous parts of riding transit (e.g., Hess, Brown, & Shoup, 

2004) – their overall ratings of service might increase.  Similarly, since HART is piloting 

a new technology and catering to the changing demographics of transit riders, this could 

reinforce their overall satisfaction with transit.  The results of the Wilcoxon rank sum test 

did not support this hypothesis.  One possible reason why this may be the case is that a 

five-point Likert scale is a very simple approximation to estimating changes in 

satisfaction, and therefore, if the changes were slight, then the unit of measurement may 

not have been sufficient to capture it.   
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Table 11: Percent Satisfied and Wilcoxon Rank Sum Test for Changes in Satisfaction 

  
Control Group Experimental Group 

Difference in Gain 

Scores 

  Sample Before After Sample Before After Wilcoxon Test 

  n 
% 

Satisfied 

% 

Satisfied 
n 

% 

Satisfied 

% 

Satisfied 
W p-value   

How frequently the bus comes 103 37% 41% 107 40% 44% 5812 0.459   

How long you have to wait for the bus 103 39% 34% 106 36% 46% 6425 0.020 ** 

How often the bus arrives at the stop on time  103 54% 45% 107 45% 59% 7094 0.0001 *** 

How often you arrive at your destination on time 101 57% 53% 106 55% 63% 5835 0.236   

How often you transfer to get to your final destination 100 44% 42% 106 38% 36% 4916 0.342   

Overall HART bus service 102 63% 59% 106 57% 58% 5717 0.410   

Significance: * p<0.10; ** p<0.05; *** p<0.01                   
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Perceived Changes 

 In addition to the measures of behavior, feeling, and satisfaction discussed above, 

the post-wave survey also included questions to the experimental group to directly 

measure perceived changes due to using RTI, including three questions about behavior 

(frequency of HART bus trips, frequency of making transfers, and wait time), three 

questions about feelings while waiting (relaxed, safety at night, and safety during the 

day), and one question about overall satisfaction with transit service.  These questions 

were specifically included to help assess if participants perceived changes and to test if 

these perceived changes aligned with the actual (self-reported) differences from the 

before survey to the after survey.  Additionally, these questions were similar to two prior 

studies of RTI users in Seattle, which also relies on OneBusAway for transit traveler 

information (Ferris et al., 2010; Gooze et al., 2013), so responses between the two studies 

could be compared.  It is important to note that these questions were placed after all of 

the previously discussed questions (but prior to questions on changes in demographics) to 

avoid influencing the responses to the other post-wave survey questions.  

 Figure 5 shows that 39% of the experimental group reported that they make 

HART bus trips more often (combined total of “somewhat” or “much” more often), while 

the majority (60%) stated that they ride HART buses “about the same” amount.  This 

result is similar to the findings of the Seattle surveys; approximately one third of RTI 

users said that they make more non-work/school trips per week (Ferris et al., 2010a; 

Gooze et al., 2013a).  To compare this question with the results of previous analysis of 

gain scores from the pre-wave to post-wave surveys, each gain score of self-reported trips 

per week was categorized as an increase, decrease, or no change, and the correlation 
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coefficient with “perceived” changes (more often, the same, less often) was calculated.  

The results indicate that there was limited correlation between the perceived change in 

trips and actual difference in self-reported trips per week over the study period (Pearson’s 

R=0.129).
1
   

 Figure 5 also shows that 16% of RTI users believe that they transfer more often 

(combined total of “somewhat” or “much” more often), whereas over three quarters 

(79%) of stated that they transfer “about the same” number of times.  Again, there is 

limited correlation between the stated question and the actual change (increased, 

decreased or same number) in transfers per week from the before to the after survey 

(Pearson’s R=0.138).   

 Importantly, 64% of RTI users reported that they spend less time waiting at the 

bus stop, which is in alignment with the previous analysis of “usual” wait times.  This 

result is notably smaller than for a similar question posed of Seattle RTI users, which 

found that 91% reported spending less time waiting (Ferris et al., 2010a).  Also, when 

this question is compared to the change in self-reported usual wait times from the before 

to the after survey, there was very little correlation (Pearson’s R=0.009).  This low level 

of correlation was likely due to two groups: one group who reported actual decreases in 

“usual” wait times but stated that they wait “about the same” (14% of the experimental 

group) and another group who reported identical “usual” wait times from the before to 

the after survey but stated that they wait less (21%).  This may be caused by differences 

in the perception of wait time.  

                                                 

 

 
1
 Analysis shown in Appendix.   
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Figure 5: Perceived Behavior Changes of Real-Time Information Users 

  

 Members of the experimental group were also asked to agree or disagree (on a 

five-point Likert scale from strongly disagree to strongly agree) with statements about 

increases in feelings of safety at night, safety during the day, and relaxation while waiting 

for the bus.  Figure 6 shows that 52% were “neutral” about feeling safer at night and the 

remainder was split almost equally between agreeing (strongly or somewhat) and 

disagreeing (strongly or somewhat).  When asked about safety during the daytime, 40% 

agreed that they feel safer since they began using OneBusAway.  These results are 

similar to the 2012 survey in Seattle, which found that approximately 32% of RTI users 

had a positive shift in the perception of personal security (Gooze et al., 2013).  However, 

while these results appear to support the previous analysis of changes in perceptions of 

personal security from the before to the after survey, the correlation between those who 

had changes in ratings of safety (net increase, decrease or same) with those who 

perceived that they did was very limited (Pearson’s R=0.011).   
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 As can be seen in Figure 6, 68% of the experimental group agreed that they feel 

“more relaxed” since they started using RTI.  While the previous analysis of feelings did 

not reveal a statistically significant difference between the experimental group and the 

control group in relaxation, this could in part be captured by reductions in levels of 

frustration and anxiousness.   

 Last, members of the experimental group were asked (on a five-point Likert scale 

from strongly disagree to strongly agree) about increases in their satisfaction with overall 

HART bus service.  As can be seen in Figure 6, 70% of the experimental group agreed 

(somewhat or strongly) with the statement that they are more satisfied with overall transit 

service since they began using RTI.  This is notably less than the 2009 study in Seattle, 

which found that 92% of OneBusAway users were either somewhat or much more 

satisfied with overall transit service (Ferris et al., 2010a).  Comparing this question to the 

changes in ratings of overall satisfaction from the before to the after survey shows no 

correlation (Pearson’s R=-0.010), but there is some limited correlation with the changes 

in satisfaction with “how long you have to wait for the bus” (Pearson’s R=0.134) and 

“how often the bus arrives at your stop in-time” (Pearson’s R=0.100).    
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Figure 6: Perceived Feeling and Satisfaction Changes of Real-Time Information Users 

  

 The analysis discussed in this section presents mixed results, since many of the 

questions about user perceptions did not align with the self-reported changes from the 

before to the after survey.  One possible reason for this discrepancy is that the questions 

posted on both the before and after surveys suffered from an insufficient scale of 

measurement.  For example, the use of trips per week to measure transit travel frequency 

could be insufficient if a person only makes one or two additional trips per month 

attributable to RTI.  A more reliable way to measure this would be to record trips over an 

extended period of time (e.g. respondents report their number of trips per week for all the 

weeks over the study period).  It is also important to note that this question was a multiple 

choice question with answers that were capped on the high end (trips/week ranged from 0 

to 11 or more trips).  Many respondents (12% of the experimental group) selected the 

maximum category in the pre-wave survey (11 or more trips/week), and then stated that 

8% 

22% 

28% 

32% 

16% 

18% 

40% 

38% 

52% 

44% 

27% 

26% 

12% 

8% 

2% 

1% 

12% 

7% 

4% 

3% 

0% 100%

Feel safer when waiting for the bus

at night (n=108)

Feel safer when waiting for the bus

during the daytime (n=107)

Feel more relaxed when waiting for

the bus (n=108)

Feel more satisfied riding HART

buses (n=107)

Since you began using OneBusAway, do you... 

Agree strongly

Agree somewhat

Neutral

Disagree somewhat

Disagree strongly



 83 

they increased their trips in the post-wave survey, but the surveys did not capture this 

change.   

 A second plausible explanation is bias on behalf of the survey respondents.  The 

survey methods literature has shown that respondents often have an affirmation bias, also 

known as the demand characteristic, and will give the response that he or she thinks the 

researchers want to hear (Stopher, 2012).  When asked directly about changes (as 

opposed to those changes inferred from before and after self-reported measures), 

participants may have selected answers that they felt would make RTI or their 

participation in the study look more favorable.   

Limitations 

 

 There are four notable caveats that may limit the results of this study: the length 

of time of the study, participant difficulties using the smartphone applications, 

representativeness of the sample, and applicability to a larger population beyond Tampa.   

 One important limitation of the study was the time at which the post-wave survey 

was conducted.  In June 2013, HART opened its first Bus Rapid Transit (BRT) route in 

central Tampa.  Because this was a significant change to the transit network, the post-

wave survey was conducted approximately two weeks before the opening of the BRT 

route.  In theory, the before-after control group design should mitigate such external 

events (e.g. opening of a new route/line) because the experimental group can be 

compared to the control group.  Despite this, the study was concluded sooner than desired 

to avoid potentially muddying the effect of the treatment by this significant change in 

transit service.  This resulted in a total study period of slightly less than three months, 
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which may not have been sufficiently long to capture changes in travel behavior, feelings, 

or satisfaction. 

 A second limitation pertains to the manner in which the treatment (access to RTI) 

was limited to only the experimental group.  As was previously noted, in order to use the 

native smartphone applications for Androids and iPhones, participants were instructed to 

download the publically available Seattle OneBusAway smartphone applications and 

then change a setting to re-direct the application programming interface from Seattle to 

Tampa.  In the post-wave survey, the experimental group was asked how difficult this 

setting change process was, and 64% stated that it was easy.  However, 5% of the sample 

agreed with the statement that it was “so difficult that I did not use the Android/iPhone 

apps.”  Therefore, there could be a non-response bias in which those that found this 

process overly complicated dropped out of the experimental group.  If this was the case, 

these participants were likely less tech-savvy or possibly less patient than remaining 

participants, which could, for example, bias feelings while waiting for the bus.  

 Since the use of a before-after control group research design helps to protect 

against many threats to interval validity, other noteworthy concerns include threats to 

external validity (Campbell & Stanley, 1963).  First, the representative of the sample to 

overall bus ridership in Tampa could be a concern since non-probability sampling was 

used to recruit participants.  To investigate this, socioeconomic questions were asked on 

the pre-wave survey, and whenever possible, questions were worded in an identical 

manner to the last system-wide HART bus ridership survey, which was conducted in 

2009 (Tindale-Oliver & Associates, 2010).  The participants in this study differed from 

the 2009 system-wide survey on three noteworthy socioeconomic characteristics: 



 85 

ethnicity, income, and automobile ownership.  This study had a total of 59% white 

participants and 21% African American respondents, whereas the 2009 system-wide 

survey had only 29% white respondents and 49% African Americans.
2
  Similarly, this 

study had only 18% of respondents with annual household incomes less than $10,000, but 

the 2009 ridership survey found that 45% of riders had annual household incomes less 

than $10,000.  Finally, this study had 52% of respondents without cars in their household, 

whereas the 2009 survey had 66% of respondents without cars in their household.  

Additionally, due to institutional review board regulations, participants under age 

eighteen were not included in this study, which biased the sample away from younger 

riders.  Therefore, it appears that certain groups were oversampled, including those with 

slightly higher incomes, somewhat increased levels of automobile ownership, older age 

groups, and Caucasians.  Despite these differences, this sample was primarily composed 

of transit-dependent, low-income participants.    

 A related concern is that those who were oversampled may be more likely to have 

higher levels of technology adoption (i.e. web-enabled and mobile devices).  

Unfortunately, prior survey data on transit rider use of information and communication 

technologies in Tampa was not available for comparison.  Despite this, in the pre-wave 

survey, respondents were asked which information and communication technologies they 

use.  A total of 78% of participants stated that they used smartphones, and the most 

commonly used smartphones were Androids (52% of all participants).  Since the before 

                                                 

 

 
2
 This survey question in this study allowed respondents to select more than one 

ethnicity, but the 2009 system-wide survey did not.  Therefore, the two ethnicity 

questions are not perfectly equivalent.  
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and after surveys were conducted through web-based survey software, all participants 

had, at a minimum, a means to access the internet and could therefore try OneBusAway 

through the web or mobile web interfaces.   

  Finally, with respect to the limited gains in trips per week associated with RTI, 

there are two important notes.  First, many bus riders in Tampa are dependent on transit 

and have limited ability to increase their trips, as they are already using transit for all or a 

majority of their trips.  Also, the participants in this study were recruited from among 

people already in the sphere of influence of the transit provider; thus, there was no 

opportunity to analyze the potential of RTI for attracting entirely new riders.  For these 

reasons, a substantial change in existing ridership associated with RTI was not 

anticipated in this study of Tampa, which may differ from previous research in transit-

dense cities such as Seattle or Chicago.  For these reasons, it is important to continue to 

use experimental studies to gauge the impacts of RTI in a variety of locations.   

Conclusions 

 

 This study conducts a comprehensive analysis of the benefits of RTI provided to 

bus riders in Tampa, Florida.  Based on the results of a before-after control group 

research design, the primary benefits associated with providing RTI to passengers pertain 

to waiting at the bus stop.  A difference of means analysis of gain scores of “usual” wait 

times revealed a significantly larger decrease (nearly 2 minutes) for the experimental 

group than the control group.  Moreover, analysis of the gain scores of feelings while 

waiting for the bus revealed significant decreases in levels of anxiety and frustration and 

increases in levels of productivity and safety during the daytime associated with the use 

of RTI.  This is further supported by significant increases in satisfaction with “how long 
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you have to wait for the bus” and “how often the bus arrives at your stop on time” for the 

experimental group compared to the control group.  Taken together, these three analyses 

provide strong evidence that RTI significantly improves the passenger experience of 

waiting for the bus, which aligns with prior studies of RTI in other cities.  Two 

respondents summed up these benefits in the open-ended question at the end of the post-

wave survey by writing the following: 

 

“Brilliant tool!  …  Often when catching busses along their route, I felt like it was the 

‘wild, wild, west’ with times, busses not showing, etc.  OneBusAway helped make 

everything much more sensible and relaxing!! (sic)” 

 

“Please put the OneBusAway program into affect (sic) as soon as possible. There  is 

nothing more frustrating than waiting on a bus that is running real late or not going to 

show at all.  And the whole time you're stuck out in the street just waiting and waiting.” 

  

 While the experience of waiting for the bus appears to have been significantly 

improved by using RTI, evidence supporting changes in the number of transit trips 

associated with RTI was limited for this sample of existing transit riders.  The difference 

of mean gain scores in weekly trips showed that the experimental group did not have a 

significant change compared to the control group.  A largely transit-dependent population 

of riders in Tampa could be contributing to this limited increase.  Despite this, a sizable 

percentage (39%) of the experimental group stated that they ride the bus more frequently 

since they began using RTI.  This is likely due to either an affirmation bias on behalf of 

the respondents and/or an insufficient scale of measurement used by the researchers.    

 In addition to these findings, a key contribution of this research is demonstrating 

that controlled behavioral experiments can be used to evaluate web and mobile 

applications used by transit travelers.  This experiment was particularly distinctive in its 
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ability to (largely) limit the use of the smartphone applications to the experimental group.  

Hopefully, the successful implementation of this behavioral experiment will lead to the 

increased use of before-after control group research designs to evaluate new information 

and communications technologies used by travelers in the future.   
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Abstract 

 

 Transit agencies often struggle to provide reliable service, and to address this, 

they increasingly provide real-time vehicle location and arrival information to riders via 

web-enabled and mobile devices.  However, researchers have had difficulty determining 

if the provision of this new information source causes travelers to ride transit more.  

Therefore, the objective of this research is to develop a new methodology to quantify 

potential changes in the number of transit trips by real-time information users.   

The method combines data from a smart card ticketing system with web-based 

survey responses to study the behavior of individual transit riders before and after the 

availability of real-time information.  First, three conditions were imposed on the joint 

smart card/survey dataset to assess if each record accurately reflected an individual’s 

travel behavior.  The first condition necessitated that the respondent began using real-

time information in the appropriate timeframe and had the smart card sufficiently long to 

be used in the before-after analysis. The second condition tested if one smart card 

actually represented one traveler, and the third condition verified that the smart card 

number trip history corresponded to the respondent’s stated travel behavior.  Then, 

difference of means tests and regression analysis were used to assess differences in 
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monthly transit trips between real-time information users and non-users.  The results 

suggest that real-time information did not have a significant effect on the number of trips 

made by users in the study, but the final sample size used in this analysis was very small.   

The primary contribution of this research is the methodology, which may be more 

broadly applied for transit marketing and travel behavior analyses.  

Introduction 

 

 Maintaining a high level of reliability is a substantial operational challenge for 

many public transit agencies.  To address reliability issues, transit authorities increasingly 

provide real-time vehicle location or arrival information to riders via web-enabled and 

mobile devices (Schweiger, 2011; Rojas, Weil, & Graham, 2012).  Studies of transit 

riders using real-time information have found many benefits, including passengers 

adapting to unreliability by choosing alternative transit service (Carrel, Halvorsen, & 

Walker, 2013), reducing wait times (Watkins, Ferris, Borning, Rutherford, & Layton, 

2011), increasing the perception of personal security (Ferris, Watkins, & Borning, 2010b; 

Gooze, Watkins, & Borning, 2013; Zhang, Shen, & Clifton, 2008), and increasing 

satisfaction with transit service (Ferris et al., 2010; Gooze et al., 2013; Zhang et al., 

2008).  Despite these benefits, researchers have had difficulty answering a question that 

managers and planners at transit agencies commonly ask: does real-time information 

cause travelers to ride transit more?  Because transit ridership is affected by numerous 

factors, previous studies have had difficulty isolating changes in transit trip-making 

caused by providing real-time information. 

 To explore this, another increasingly common transit technology is used: smart 

card ticketing systems.  While contactless smart card systems were installed with the 
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primary purpose of revenue collection, the data created from these systems can be used to 

evaluate travel behavior (Bagchi & White, 2005; Pelletier, Trépanier, & Morency, 2011).  

In this case, smart card data are used to conduct a disaggregate analysis of the frequency 

of transit trips before and after the availability of mobile real-time information.  In order 

to understand which smart card users are also real-time information users and which are 

not, the smart card data are combined with the responses from a web-based survey asking 

about use of real-time information.  To link the two data sets, a survey question requested 

the unique 16-digit smart card number of each respondent.  This method was applied to 

the case study of Atlanta, Georgia.          

     This paper is divided into seven sections.  First, prior research about real-time 

information and smart card systems is briefly reviewed.  The second section provides 

background information on Atlanta, and the third section describes the survey data 

collection process.  Next, the methodology is described and three key conditions are 

applied to the combined smart card/survey dataset.  The fifth section is an application of 

the combined smart card/survey dataset to evaluate the impacts of real-time information 

in Atlanta.  This is followed by a discussion of areas for improvement and future 

research, and last, conclusions are presented.  

Prior Research 

 

 This brief literature review is divided into two parts.  The first section summarizes 

prior studies of the impact of real-time information on passenger behavior, with a focus 

on changes in transit trip-making.  The second section provides a review of the uses of 

transit smart card data to study traveler behavior.  
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Real-Time Information Literature  

 Real-time information (RTI) refers to up-to-the-minute tracking of transit vehicle 

locations, and it often includes predicted arrival times for stops and/or stations.  Mobile 

RTI is increasingly used by passengers as they travel in transit systems due to the 

widespread adoption of web-enabled and mobile devices (Schweiger, 2011).  In light of 

this trend, a growing body of literature aims to assess the benefits of providing RTI to 

transit riders.  Prior studies have found many benefits, including riders adapting to 

unreliability by choosing alternative transit service (Carrel et al., 2013), reducing waiting 

times (Watkins et al., 2011), increasing perceptions of personal security (Ferris et al., 

2010; Gooze et al., 2013; Zhang et al., 2008), and increasing satisfaction with transit 

service (Ferris et al., 2010; Gooze et al., 2013; Zhang et al., 2008).  If RTI users can 

adapt to unreliable service more easily, spend less time waiting, feel safer, and/or are 

more satisfied with overall service, it follows that they may make more trips on the transit 

system, either by choosing transit over alternative modes or making trips that they would 

not have made otherwise.  A small number of studies have aimed to understand this, and 

this literature review focuses on research that evaluates actual transit rider behavior (as 

opposed to simulation or stated preference methods). 

 A panel study conducted on the University of Maryland campus measured 

changes before and after the implementation of an RTI system on the university shuttle 

bus network (Zhang et al., 2008).  Based on the results of a fixed-effects ordered probit 

model of shuttle trips, the authors concluded that RTI did not significantly increase 

travelers’ transit trip frequency.  The authors noted that they evaluated the number of 

shuttle trips only two weeks after an extensive marketing campaign of the new RTI 
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system, and consequently, there may have been insufficient time for adjustments of travel 

behavior.  The authors also stated that “further research on the long-term effects of real-

time transit information systems is necessary to understand how travelers may gradually 

change their behaviors and perceptions as they make more use of real-time transit 

information” (Zhang et al., 2008). 

 Two studies of bus riders in Seattle, Washington provide some evidence that use 

of mobile RTI may lead to an increase in the number of trips made on transit.  In 2009, a 

web-based survey of over 400 RTI users asked respondents if their average number of 

transit trips per week changed as a result of RTI.  Approximately 31% of users reported 

increases in non-commute trips (1 more trip, 2 more trips, or 3+ trips per week), while a 

smaller percentage reported increases in commute trips on transit (Ferris et al., 2010).  A 

follow-up web-based survey of RTI users in 2012 found similar results (Gooze et al., 

2013).  The authors identified two important caveats for these studies: the survey results 

were all self-reported and did not include a control group of non-users (Ferris et al., 

2010).   

 Perhaps the most relevant reference to this study is an empirical evaluation of 

Chicago’s real-time bus tracking system (Tang & Thakuriah, 2012).  The authors created 

a linear mixed regression model of monthly average weekday route-level bus ridership 

from 2002 to 2010, during which time RTI was gradually rolled out on groups of bus 

routes.  After controlling for many factors including transit service attributes, 

unemployment, gas prices, and weather, the authors found a “modest” increase in bus 

ridership of approximately 126 weekday rides per route attributable to RTI.  A 

noteworthy limitation of the study design is that only route-level changes in trips were 
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assessed because the availability of RTI was modeled as a binary variable for each bus 

route in the regression model.  Therefore, the modeling framework could not clearly 

differentiate between additional trips made by users of RTI versus non-users of RTI.   

 In summary, two of the three locations studied (Chicago and Seattle) provide 

some evidence that use of RTI may cause an increase in transit travel. To improve upon 

the prior research, this study has the following three enhancements: (1) a sufficiently long 

period of time after the launch of RTI; (2) a more reliable method of measuring travel 

than self-reported data; and (3) differentiation between the travel patterns of users and 

non-users of RTI.  To do this, smart card data were used to assess transit traveler 

behavior, and a brief review of literature pertaining to smart card datasets is provided in 

the following paragraphs.  

Smart Card Literature  

 While smart card systems are designed for the purpose of revenue collection, they 

can also provide a rich source of data about transit use (Bagchi & White, 2005; Pelletier 

et al., 2011).  Passengers with contactless smart cards pay their fares by “tapping” their 

cards on fareboxes or faregates, and with each tap, a record is created that includes the 

date and time, the type of transaction (boarding/entering, transfer, etc.), fare type, 

route/line ID, route/line direction, station/stop ID, a unique card ID number (similar to a 

credit card number), among other things (Pelletier et al., 2011).  Some transit agencies 

also allow smart card users to register their cards, typically for the purpose of refunding 

the value of lost/stolen cards or for using autoload features; registration can include a 

limited amount of personal information, such as contact information.  
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 A growing body of research takes advantage of this automatically collected 

dataset, and Pelletier et al. (2011) provide a thorough literature review of the uses of 

transit smart card data, which they divide into three groups: operational-level, tactical-

level, and strategic-level applications.  Operational-level studies use smart card data to 

measure various transit supply-and-demand indicators and performance indicators, such 

as calculating schedule adherence for a given run, route, or day.  Tactical-level studies 

most commonly focus on service adjustments, while strategic level studies are typically 

related to long-term network planning, demand forecasting, and traveler behavior 

analysis.  In this case, a strategic-level analysis of transit traveler behavior was 

conducted.   

 As Bagchi & White (2005) note, there are some advantages of using smart card 

data compared to traditional methods of studying transit travel behavior.  Public transit 

providers have typically found it difficult to examine travel behavior over the long term 

due to a lack of suitable temporal data.  In contrast, smart card records can be stored for 

years and accessed as needed over time (Bagchi & White, 2005).  Another advantage of 

using smart card data to study travel behavior is that the data are automatically collected, 

and consequently may not be subjected to the biases commonly found in self-reported 

travel data.   

 Pelletier et al. (2011) point out that one disadvantage of using smart card data for 

studying travel behavior is a lack of socioeconomic attributes about the cardholder.  

While some smart card systems collect a limited amount of registration information 

(Utsunomiya, Attanucci and Wilson 2006), most lack basic demographic information 
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about the cardholders and none include highly specific attributes, such as the use of real-

time information.   

 One possible solution to obtaining information about the individual cardholder is 

a method recently used by Riegel and Attanucci (2014). The authors worked with the 

London Travel Demand Survey, which is a single day household travel diary for the 

London region.  The 2011-2012 survey questionnaire asked respondents to provide up to 

two smart card (Oyster card) numbers used by travelers in the household.  Then, the 

Oyster card journey histories were compared to the corresponding respondent’s self-

reported public transport trips for the day of the travel diary.  The authors concluded that 

combining the survey responses with Oyster data for specific households greatly 

enhanced the validity of the single day travel diary.      

 For this research, the procedure of asking for a unique smart card ID number in 

the survey instrument was expanded upon by also asking other questions beyond the 

simple travel diary to evaluate items not directly measurable using smart card data.  This 

method of linking smart card data with detailed survey responses can be used to evaluate 

transit trips over an extended period of time, without relying on self-report data to 

measure travel behavior, while also including specific attributes of the individual traveler 

(in this case, if they are a user or non-user of real-time information).  This method was 

applied to an empirical analysis of trips on Metropolitan Atlanta Rapid Transit Authority 

(MARTA). 

Background 

 

 Atlanta was selected for this analysis for two primary reasons.  First, MARTA 

operates the 16
th

 largest bus system and the 6
th

 largest heavy rail system in the country 
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based on passenger miles (Neff & Dickens, 2013) and provides mobile real-time 

information for all fixed route bus and train service.  Because most of the prior research 

of RTI systems focused on urban buses, this provides a more multimodal approach to the 

evaluation of real-time transit information.  Second, MARTA has a smart card ticketing 

system that was installed before the availability of real-time information, which is a 

necessary condition for a before-after analysis of real-time information.  Additional 

details about the smart card system and real-time information systems are provided in the 

following paragraphs.   

Smart Cards in Atlanta 

 MARTA’s smart card ticketing system, known as Breeze, was launched in 2006 

(Hong, 2006).  Fare media include a plastic contactless Breeze card and a coated paper 

contactless Breeze ticket, which is primarily used for student tickets, group tickets, and 

special events.  A single ride can also be paid directly with cash at bus fareboxes 

(MARTA, 2014b).  According to a recent system-wide survey of MARTA passengers, 

over 99% of riders have one or more plastic Breeze cards (MARTA, 2013).  

 The Breeze system requires tap-in on all buses and both tap-ins and tap-outs on 

MARTA rail, but this study includes tap-in data only.  MARTA riders do have the option 

of registering their Breeze cards for balance protection and reloading value online.  The 

personal information included in these processes is kept strictly confidential by the transit 

agency for privacy reasons, and consequently, was not considered in this analysis.  

Real-Time Information in Atlanta 

 Mobile real-time transit information is available in Atlanta in a number of 

different ways.  First, MARTA has developed Android and iPhone smartphone 
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applications, which are known as “On-the-Go.”  While these apps were originally 

developed with static schedule information, real-time bus and train tracking information 

was added in the fall of 2013.  Georgia Tech launched the OneBusAway real-time 

information suite of tools in Atlanta, with real-time bus information launched in “beta” in 

the spring of 2013 and both train and bus real-time information launched publically in 

February 2014.  These two platforms provide the basis for the analysis provided in the 

following sections, but it is noted that a few other apps were created within a similar 

timeframe.
3
  

Data Collection 

 To assess which riders use RTI applications, a short rider survey was conducted.  

The data were collected via a web-based survey, primarily to allow for questions with 

images (such as a Breeze Card with the 16-digit number circled and screenshots of the 

RTI smartphone applications).  Survey responses were collected during a one week 

period in early May 2014.
4
  Participants were primarily recruited through online 

channels, including an electronic message sent via the OneBusAway platform, MARTA’s 

social media, the Atlanta Regional Commission email list, and other similar email lists.  

Additionally, flyers were distributed in a small number of train stations to advertise the 

                                                 

 

 
3
 There were some limited ways of accessing real-time information prior to the launch of 

these commonly used apps.  In the fall of 2012, MARTA openly released their real-time 

bus tracking data, and a small number of other apps were created shortly thereafter, 

although usage appears to be small based on the results of the survey.  Additionally, 

MARTA had a web-based system called “web watch” that provided some access to real-

time bus tracking.     
4
 Data collection was completed before a MARTA service change went into effect on 

May 19, 2014. 
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survey.  An incentive of a $5 Starbucks gift card was provided to all participants who 

completed the survey.   

Survey Content 

 The survey was titled “Georgia Tech’s Survey of Technologies Used by MARTA 

Riders” to recruit both users and non-users of RTI, and the survey instrument was divided 

into five sections.  The first section included questions about paying for transit, such as 

use of a Breeze Card and the corresponding Breeze Card number.  In this section, the 

respondent was also asked if they share their Breeze Card(s) and if they use other ways to 

pay for MARTA (such as occasionally using a paper Breeze Ticket).  The second section 

contained transit travel behavior questions, including how many transit trips the 

respondent made in the last week.  The third part of the survey instrument included 

questions about the use of RTI via smartphone applications.  The next section asked a 

few questions about recent service changes on MARTA.  The last section was composed 

of socioeconomic questions, including how these characteristics may have changed over 

the past year.  It should be noted that detailed personal information (such as email 

address, home address, etc.) was not collected in the survey to protect anonymity of 

participants at MARTA’s request.  Last, the survey instrument was reviewed by a dozen 

Georgia Tech students and staff, as well as a MARTA customer research employee.  

Response Rate 

 A total of 669 participants entered the online survey during the one week 

recruitment period, and of these, 651 respondents answered the first question, which 

asked how they typically pay for MARTA.  Of the 651 respondents, 11 (2%) respondents 

said that they use a paper Breeze Ticket, 7 (1%) stated that they pay using cash, and 1 
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(0%) respondent was not sure of the fare media that s/he typically uses.  This left 632 

survey respondents who use one or more Breeze Cards, and of those, 538 provided a 16-

digit smart card number.  The 16-digit smart card numbers were provided to MARTA, 

and 497 matched active Breeze Card numbers.  Three additional participants were 

removed due to restrictions (i.e. under age 18), and consequently, the remaining sample 

size was 494, or 74% of all those who entered the survey.  The transit trip histories for the 

494 eligible participants were then combined with their corresponding survey response 

using the unique smart card number.  It should be noted that transit trip histories were 

aggregated to the number of trips per day per mode (bus/rail), and disaggregate data 

about the complete trip history (i.e. time-stamped tap-in locations) was not provided as a 

safeguard to protect the privacy of respondents at MARTA’s request.  Last, to assure that 

the transit trip histories from the Breeze Card database were accurate, the smart card trip 

histories of a few researchers were requested and assessed.  

Methodology 

 The following section details the methodology used to evaluate the validity of the 

combined smartcard/survey dataset for a before-after analysis of the impact of RTI.  First, 

the use of RTI by survey respondents was considered.  Next, three key conditions were 

investigated.  The first condition necessitates that the respondent began using RTI in the 

appropriate timeframe and had the smart card sufficiently long to be used in the before-

after analysis. The second condition tests if one smart card actually represents one 

traveler.  The third condition verifies that the smart card number trip history corresponds 

to the respondent’s stated travel behavior.   
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Use of Real-Time Information 

 To assess the use of real-time information, the survey contained questions in 

which the respondent was presented with images of the most popular RTI applications 

(“apps”) in Atlanta and was asked if he or she has used real-time transit information.  A 

total of 302 of the 494 eligible participants (61%) have used one or more apps to access 

RTI.  Next, respondents who had used real-time information were asked which app they 

use most frequently.  The majority of participants typically use MARTA’s On the Go app 

(225/301 = 75%), and another 56 (18%) usually use OneBusAway.  Respondents were 

then asked how often they use RTI apps.  30% of RTI users stated that they use an RTI 

app every time they ride MARTA trains and 31% said every time they ride MARTA 

buses. 

Condition 1: Panel Eligibility  

 Next, a series of conditions were imposed on the joint smart card/survey dataset to 

assess if each record accurately reflects an individual’s travel behavior.  The first 

condition was that of panel eligibility.  For the before-after analysis of RTI, the smart 

card trip histories were compared for April 2013 and April 2014.  Because the 

intervention (the launch of various RTI apps) occurred at different times in 2013 and 

2014, a month before the main release of RTI in Atlanta (April 2013) and the same 

month one year later (April 2014) were selected.  Since there was the possibility that 

respondents began using RTI during the before period (April 2013 or earlier) or in the 

middle of the after period (April 2014), respondents were asked to recall when they 

began using RTI to test their panel eligibility.  Similarly, to ensure that the smart card 
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was in use for the entire study period, respondents were asked to recall when they began 

using their smart card in a second test of panel eligibility.    

Condition 1A: Panel Eligibility of the Intervention  

 First, respondents were asked to recall approximately when they started using an 

app that provides real-time information (i.e. the intervention), and the results are shown 

in Table 12.  The majority of respondents who use RTI began within the last year, since 

most apps were released within the last twelve months (see discussion in the Background 

section).  A total of 201 respondents began using the apps between May 2013 and March 

2014, and these respondents were deemed panel eligible.  Another 36 could not recall 

when they began using RTI, and 2 did not answer the question, and it was assumed that 

they began within the last year.  In summary, a total of 239 respondents were deemed 

panel eligible real-time information users, and they could be compared to the 192 non-

users.  This resulted in a sample size of 431 respondents meeting Condition 1A. 

 

Table 12: Condition 1A (Panel Eligibility of the Intervention) 

When did you start using an app with RTI? # % Met Condition 1A 

Began using RTI before April 2013 37 7% No 

Began between May 2013 and March 2014 201 41% Yes 

April 2014 or later 26 5% No 

Cannot remember 36 7% Yes 

No Answer  2 0% Yes 

Total 302 61% 239 

Non-users 192 39% Yes 

Grand Total 494 100% 431 
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Condition1B: Panel Eligibility of the Smart Card 

 Panel eligibility was also assessed by asking respondents if they got their Breeze 

Card within the last year or more than a year ago, and the results are shown in Table 13.  

Of the 431 respondents meeting Condition 1A, a total of 264 of the respondents (61%) 

stated that they have had their Breeze Card for more than a year, and consequently, they 

met the second requirement of panel eligibility. Another 41 respondents (10%) could not 

recall when they acquired their Breeze Card, and it was assumed that these respondents 

were also panel eligible.  This resulted in a total of 305 participants who met Condition 

1B.  These survey responses were also compared to the trip history from the smart card in 

April 2013, as shown in Table 13.  Last, it should be noted that this condition excludes 

any person(s) who began riding transit in Atlanta within the last year, since they did not 

have a Breeze Card a year ago. 

 

Table 13: Condition 1B (Panel Eligibility of the Smart Card) 

  Breeze Card History 

Self-Reported Card 

Acquisition 

No Trips in 

April 2013  

1 or More Trips 

in April 2013 
Total 

% 

Total 

Met 

Condition 1B 

Within the last year 111 15 126 29% No 

One year or more ago 111 153 264 61% Yes 

I'm not sure 29 12 41 10% Yes 

Total 251 180 431 100% 305 

 

Condition 2: Completeness and Uniqueness (i.e. One Smart Card = One Person) 

 Next, a respondent’s smart card/survey response was tested for the conditions of 

completeness and uniqueness.  A Breeze Card trip history was considered complete if the 

respondent did not use any other form of payment when riding MARTA; consequently, 
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all of the respondent’s transit trips on MARTA would be captured in the trip history of 

his or her smart card.  A Breeze Card was considered unique if it is only used by a single 

person.  A Breeze Card trip history could be complete if the person uses it for all of their 

MARTA trips, but it would not be unique if it is shared with others and consequently 

represents the travel behavior of more than one person.  If both the conditions of 

completeness and uniqueness are met, it was assumed that one smart card represents one 

person.  The conditions of completeness and uniqueness were assessed using the survey 

responses to three questions; consequently, this test relies solely on self-reported 

information.  

Condition 2A: Complete with One Breeze Card 

 The first survey question pertaining to completeness asked if a respondent had 

one Breeze Card or two or more Breeze Cards.  As is shown in Table 14, a total of 86 

(71+15) respondents have two or more Breeze Cards and therefore, their trip histories 

may not be complete.
5
  The remaining 219 (193+26) participants were assumed to meet 

Condition 2A.   

Condition 2B: Complete with No Other Fare Media 

 As a second measure of completeness, all participants were asked if they pay for 

MARTA in other ways (such as cash or a paper Breeze Ticket).  A total of 26 of the 219 

respondents who met Condition 2A also used other fare media, and consequently, their 

                                                 

 

 
5
 Respondents with 2 or more Breeze Cards were asked to provide the number of the card 

that they use most frequently.  Future research could aim to gather the number of all 

smart cards that respondents possess.  Additional Breeze Card numbers were not 

requested in this analysis to lessen the burden on the respondent.  
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smart card trip history cannot be considered complete.  Table 14 shows that a total of 193 

participants met both Conditions 2A and 2B and can be deemed complete (shown in the 

lower left box in Table 14).    

Condition 2C: Unique 

 Finally, to understand uniqueness, survey participants were asked if they share 

their Breeze Card, and to what extent they share their card (e.g. occasionally, often).  A 

total of 159 respondents met the uniqueness condition because they never share their 

single Breeze Card (shown in the upper left box in Table 14).  Consequently, it was 

assumed that the smart card numbers provided by those 159 respondents accurately 

represents the transit travel of only those respondents.  

 

Table 14: Conditions 2A, 2B, and 2C (Completeness and Uniqueness) 

  

Complete 

1 Breeze Card 2+ Breeze Cards 

Total 
Uses only 

Breeze 

Card 

Uses 

other 

media  

Uses only 

Breeze 

Card 

Uses 

other 

media  

U
n

iq
u

e
 

I never share my Breeze Card (1 or 2 cards) 159 20 42 8 229 

I have shared my Breeze Card once or twice 25 4 14 3 46 

I occasionally share my Breeze Card 3 2 13 4 22 

I often share my Breeze Card 4 0 1 0 5 

I'm not sure 1 0 0 0 1 

Other 1 0 1 0 2 

Total 193 26 71 15 305 

Percent Total 63% 9% 23% 5% 100% 

 

 

Condition 3: Congruence (i.e. That Smart Card = That Person) 

 Last, the responses in the combined survey/smart card dataset were tested for the 

condition of congruence by comparing each smart card trip history to a self-reported 

travel behavior survey question.  The primary purpose of this assumption was to identify 
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errors when the respondent entered his or her 16-digit Breeze Card number in the online 

survey or potential errors in the Breeze Card system.  A Breeze Card trip history was 

considered congruent with a survey response if it aligned with a question about transit 

travel, and if it did, it was assumed that the particular smart card trip history represents 

that particular person.  

 The specific method to assess congruence in this analysis was comparing the 

number of MARTA train trips made in the last week from the smart card trip histories to 

an equivalent survey question.  The survey respondent was instructed to begin counting 

train trips from the previous day and continuing back seven days.  Because the online 

survey response included a time and date of completion, the self-reported number of trips 

was compared to the same seven days of smart card trip history to tabulate the numbers 

of MARTA train trips.  Respondents were also instructed to count train-to-train transfers 

as single trips, but transfers that involved bus modes (bus and train) were counted 

separately.  This was to assure that the number of “taps” in the smart card database 

aligned with self-reported trips, since bus-to-train transfers involving tapping the smart 

card at the transfer point whereas train-to-train transfers do not require an second tap 

(since one stays within the fare gates).   

Condition 3A: Closely Congruent 

 As is shown in Table 15, a total of 135 (of unique, complete, and panel eligible 

respondents) self-reported trips from the survey matched the respective smart card trip 

history within two train trips.  These survey responses were deemed to be “closely 

congruent” with the respective smart card and meet Condition 3A.  “Close” congruence 

was considered because self-reported travel behavior questions are often subject to error, 
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particularly recall bias in which respondents cannot correctly remember their transit trip-

making patterns (Stopher, 2012, p. 142).  Similarly, there is the possibility that a 

transaction was missing from the smart card dataset, since prior research by Utsunomiya, 

Attanucci and Wilson (2006) identified this as a possible flaw with smart card datasets.   

Condition 3B: Perfectly Congruent 

 Table 15 shows that a total of 100 respondents (of those who were unique, 

complete, and panel eligible) had self-reported survey results that perfectly matched the 

respective smart card trip history.  These survey responses were deemed to be “perfectly 

congruent” and met Condition 3B. 

 

Table 15: Condition 3A and 3B (Closely or Perfectly Congruent) 

  Number of Breeze Card Trip Histories 

Self-Reported Train Trips 

in the Last 7 Days 

Closely Congruent 

(Within 2 Trips) 

Perfectly 

Congruent 

All 

Responses 

0 trips 63 62 63 

1 trips 11 7 11 

2 trips 17 8 18 

3 trips 0 0  0 

4 trips 10 5 13 

5 trips 2 0 4 

6 trips 0 0 1 

7 trips 0 0 2 

8 trips 4 3 7 

9 trips 0 0 0 

10 trips 16 7 21 

11 trips or more 12 8 19 

Total 135 100 159 

Percent Total 85% 63% 100% 
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Summary 

 Three key conditions were imposed on the linked survey/smart card dataset, and 

this resulted in a total of 100 (20%) of the 494 eligible participants whose records were 

deemed panel eligible, complete, unique, and congruent.  Table 16 shows the sample size 

as each assumption was applied.  Since the sample size decreased substantially, all 

assumptions were considered and compared in the following analysis.  

 

Table 16: Summary of Conditions and Sample Sizes 

Number Condition Sample Size  Percent Total 

- Full Survey/Smart Card Dataset 494 100% 

1A Panel Eligibility of the Intervention 431 87% 

1B Panel Eligibility of the Smart Card 305 62% 

2A Complete with One Breeze Card 219 44% 

2B Complete with No Other Fare Media 193 39% 

2C Unique 159 32% 

3A Closely Congruent 135 27% 

3B Perfectly Congruent 100 20% 

 

 

Application to Evaluate Use of Real-Time Information 

 The next section uses the joint smart card/survey dataset to conduct a before-after 

analysis of the impacts of real-time information on transit trip-making.  This analysis is 

divided into three parts.  The first section presents simple statistics to compare the 

number of transit trips by RTI users with non-users.  The second section uses regression 

analysis to control for other factors that may be influencing participants’ levels of transit 

travel.  The third section presents the results of additional survey questions that assess 

changes in perception for RTI users.  
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Difference of Mean Differences 

 The first analysis uses simple statistics to compare the number of transit trips 

before and after the availability of RTI for users and non-users.  The period of analysis 

was four weeks in April beginning with the first Tuesday of the month to ensure the same 

number of days and the same type of days (i.e. 4 Mondays, 4 Tuesdays, etc.) in both 

April 2013 and April 2014.  Conveniently, April also includes typical school trips (the 

local universities are all in session) and no major holidays.   

 Table 17 shows the mean (M), standard deviation (SD), minimum (Min), and 

maximum (Max) number of transit trips for the four weeks in April 2013 and the 

comparable number in 2014 broken down by RTI users versus non-users.  The difference 

between 2013 and 2014 was calculated for each individual, and this difference was used 

in a difference of means test between RTI users and non-users.  The results are shown for 

the entire dataset (n=494) in the leftmost column of Table 17.  Each condition 

(Conditions 1A through 3B) was progressively applied moving toward the right of the 

table and a comparable analysis was conducted.   

 When the full dataset (n=494) is considered (the leftmost column in Table 17), the 

results suggest that RTI users increased MARTA trips significantly more than non-users 

from April 2013 to April 2014 (mean difference RTI-users=11.7 trips, mean difference non-

users=4.9 trips, two-tailed p-value=0.0006).  There are similar findings when Condition 

1A (Panel Eligibility of the Intervention) is applied, which excludes any RTI user who 

may have begun using RTI before May 2013 or after March 2014.   

 When Conditions 1B, 2A-2C, and 3A-3B are applied, the mean difference in trips 

for the RTI user group is still greater than the mean difference in trips from April 2013 to 
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April 2014 for the non-user group; however, this difference is not statistically different 

between the two groups.  This could be in part because the more filtered datasets have 

smaller sample sizes and therefore have larger variances of the estimator, making it more 

difficult to detect a difference.  It may also be because the RTI user group consistently 

took more trips in April 2013 than the group of non-users, which suggests that those who 

use transit more were more likely to adopt RTI.    

 Difference of means tests were run for each mode (bus, rail) separately, and 

similar results were found in which RTI was only significant for the full dataset and for 

the dataset meeting Condition 1A.   
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Table 17: Before-After Analysis of Transit Trips  

    All Data Condition 1A Condition 1B Condition 2A Condition 2B Condition 2C Condition 3A Condition 3B 

  

 

(Matches) (Panel Eligible) (Panel Eligible) (Complete) (Complete) (Unique) (Congruent) (Congruent) 

    RTI No RTI No RTI No RTI No RTI No RTI No RTI No RTI No 

 Count 302 192 239 192 166 139 114 105 99 94 77 82 60 75 38 62 

A
p

ri
l 

2
0

1
3

 

M 10.2 4.7 10.0 4.7 12.9 6.2 14.1 6.8 15.8 7.4 17.5 8.4 15.6 5.7 12.8 4.1 

SD 20.2 14.5 19.1 14.5 20.1 16.5 20.3 18.0 21.2 18.9 22.0 20.0 21.7 12.3 22.2 9.4 

Min 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Max 113 138 113 138 91 138 91 138 91 138 91 138 91 59 91 46 

A
p

ri
l 

2
0

1
4
 

M 21.9 9.6 21.4 9.6 21.2 10.1 21.4 11.9 21.7 12.2 22.8 12.5 21.7 7.9 21.1 5.1 

SD 29.3 22.4 29.7 22.4 31.1 23.8 27.4 26.6 26.9 26.5 27.6 27.0 27.5 14.7 29.8 10.6 

Min 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Max 212 205 212 205 212 205 112 205 112 205 112 205 112 70 112 40 

D
if

fe
re

n
ce

 

M 11.7 4.9 11.4 4.9 8.3 3.9 7.3 5.1 5.9 4.8 5.2 4.0 6.1 2.2 8.3 1.0 

SD 27.8 15.8 28.3 15.8 29.1 15.7 24.6 17.9 23.2 16.3 24.3 14.7 25.4 11.3 25.1 8.9 

Min -51 -32 -51 -32 -51 -32 -44 -32 -44 -32 -44 -32 -24 -32 -17 -32 

Max 174 95 174 95 174 95 112 95 112 80 112 67 112 45 112 40 

 

t = -3.478 t = -3.016 t = -1.69 t = -0.7524 t = -0.369 t = -0.3728 t = -1.097 t = -1.732 

 p=0.0006 p=0.003 p=0.092 p=0.453 p=0.713 p=0.710 p=0.276 p=0.0905 
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Regression Analysis 

 Since changes in an individual’s monthly transit trips could be attributed to 

factors other than the use of RTI, survey respondents were asked a series of retrospective 

questions to understand possible changes that may have influenced their travel behavior 

between April 2013 and April 2014.  This included questions about changes in household 

size, automobile ownership, job location, and household location over the last year.  

Additionally, a few short questions about awareness of MARTA’s minor service changes 

that occurred in December 2013 were included in the survey instrument, since this could 

have also caused changes in transit travel during the study period.  The results of these 

questions were then included in a regression model to assess the impact of real-time 

information while controlling for these other factors.  The dependent variable in the 

regression was the difference in monthly trips (precisely, four weeks) from 2013 to 2014 

from the smart card trip history, and the independent variables included the previously 

mentioned retrospective survey questions, as well as standard socioeconomic 

characteristics (e.g. ethnicity, age, etc.).    

 Various regression models were assessed, and the regression models selected for 

presentation are shown in Table 18.  This set of regression models contains only those 

variables that were significant in either the full dataset or the congruent conditions (3A 

and 3B); a regression table showing all variables that were considered can be found in the 

appendix.  As shown in Table 18, the variable of interest, real-time information, was only 

significant in the regression models using the full dataset and the dataset in which 

Condition 1A was met.  When the additional assumptions were applied, use of real-time 

information was no longer significant.  The other variables that were consistently 
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significant as the sample size decreased were having a valid driver’s license, which 

caused a decrease in MARTA trips from 2013 to 2014, and being African American, 

which was associated with an increase in transit trips.  However, both of these variables 

were to some extent collinear with the intercept: only 9% of the final sample was African 

American and 96% had a driver’s license.  Two other variables were significant in some 

of the models.  Increasing the number of cars in a household over the one year study 

period was associated with a decrease in MARTA trips in the full dataset and when 

condition 1A was applied.  On the other hand, awareness of MARTA’s recent (minor) 

service change was associated with an increase in trips in the models when the 

congruence conditions (3A and 3B) were applied.  This could suggest that the minor 

service changes in December 2013 positively impacted the number of trips riders made 

on MARTA, although further study of this is recommended.  Last, the goodness of fit 

was an R-squared of 0.15 for the full dataset, and this increased to 0.30 when all of the 

conditions were applied. 
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Table 18: Regression Analysis of Difference in Transit Trips 

Condition Full 1A 1B 2A 2B 2C 3A 3B 

(Intercept) 20.89
***

 20.79
***

 25.68
***

 34.22
***

 40.49
***

 37.47
***

 37.11
***

 36.15
***

 

 
(4.13) (4.39) (5.96) (6.61) (6.19) (6.45) (6.98) (7.93) 

Use Real-Time 

Information 
6.61

***
 6.49

***
 4.05 1.55 0.33 -0.67 -0.66 2.65 

(2.20) (2.30) (2.74) (2.74) (2.61) (2.91) (3.01) (3.33) 

Has a License 
-18.63

***
 -18.18

***
 -25.36

***
 -34.28

***
 -40.96

***
 -38.44

***
 -38.94

***
 -38.44

***
 

(3.88) (4.18) (5.69) (6.37) (5.99) (6.22) (6.74) (7.82) 

African American 
16.54

***
 13.72

***
 15.50

***
 19.67

***
 15.73

***
 17.59

***
 18.47

***
 10.81

**
 

(3.34) (3.60) (4.07) (4.35) (4.48) (4.83) (5.03) (5.29) 

Increased Cars in 

Household 
-8.21

**
 -8.01

**
 -6.78 -3.57 -1.07 -2.16 -4.24 -2.16 

(3.66) (3.77) (4.40) (4.56) (4.56) (5.03) (4.95) (5.59) 

Aware of MARTA 

Service Changes 

0.01 -0.08 1.96 4.22 4.60
*
 4.57 6.23

**
 6.65

**
 

(2.15) (2.31) (2.74) (2.75) (2.61) (2.91) (2.98) (3.22) 

R
2
 0.15 0.13 0.16 0.26 0.32 0.33 0.35 0.30 

Adj. R
2
 0.14 0.12 0.15 0.24 0.30 0.30 0.32 0.27 

No. Observations^ 477 416 296 214 189 155 131 98 
***

p < 0.01, 
**

p < 0.05, 
*
p < 0.1 

^ Number of observations reduced from previous sample sizes due to missing responses. 



 

118 

Perceived Changes 

 In addition to the questions used in the smart card trip history analysis, the survey 

also included questions to directly measure if RTI users perceived a change in their 

transit travel since they began using RTI.  RTI users were asked if using an app with real-

time information changed the number of trips that they take on MARTA trains or buses.  

In addition, riders were also asked about three other possible benefits of using RTI, 

including the amount of time they spend waiting, how safe they feel when waiting, and 

how satisfied they are with overall MARTA service.  Each of these four possible benefits 

(number of trips, waiting time, personal security, and satisfaction) were asked separately 

for MARTA trains and MARTA buses.  These questions were similar to two prior studies 

of RTI users in Seattle (Ferris et al., 2010; Gooze et al., 2013).   

 The results of perception questions for RTI users who met all of the conditions 

(1A-3B) are shown in Figure 7 for questions about MARTA trains and Figure 8 for 

MARTA buses.
1
  As can be seen in Figure 7, 76% of respondents said that they ride 

MARTA trains “about the same” number of times since they began using RTI.  However, 

53% of RTI users stated that they spend “somewhat less” time waiting for the train, and 

another 18% stated that they spend “much less” time waiting for the train.  Additionally, 

47% of RTI users that they are “somewhat more” satisfied with overall MARTA train 

service, and another 13% are “much more” satisfied.  As can be seen in Figure 8, most 

(50%+) of the “perfectly congruent” RTI users in the study did not regularly ride the bus.  

                                                 

 

 
1
 The results of the perception questions for the full dataset (n=494) are presented in the 

appendix. 
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Similar to the train responses, the most pronounced perceived benefits appear to pertain 

to reductions in wait times (24% stated that they wait “somewhat less”) and satisfaction 

with MARTA bus service (26% are “somewhat more” satisfied).  Last, it should be noted 

that the sample size of “perfectly congruent” RTI users was only 38 respondents for both 

train and bus questions.  

 

Figure 7: Perceived Changes when Riding MARTA Trains 
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16% 
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Figure 8: Perceived Changes when Riding MARTA Buses 

 

 

Areas for Improvement and Future Research 

 This exploratory analysis sheds light on some possible improvements and 

potential challenges for further applications of this method.  First, the survey responses 

used in this analysis were collected via non-probability sampling, and consequently, they 

are not representative of all MARTA riders.  This survey substantially differed from 

MARTA’s last system-wide survey in two ways: there were more Caucasian respondents 

and higher levels of income than those of typical MARTA riders.  A detailed breakdown 

of the socioeconomic status of this survey participants and a comparison to MARTA’s 

last system-wide survey are presented in the appendix.  Even though regression analysis 

was performed to help control for differences in socioeconomic characteristics, future 

research could use probability sampling to increase the generalizability of descriptive 

statistics.   
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 Another important improvement regarding the sampling methodology is 

incorporating assumptions pertaining to the “shrinking” sample size into the survey 

sampling methodology.  The original dataset began with 494 linked survey/smart card 

responses, and this decreased significantly to 100 (20%) after strictly imposing the three 

conditions to perform the before-after analysis.  Future applications of this methodology 

should aim to increase the sampling rate in anticipation of this. 

 A third area for improvement in the data collection process is to include an 

additional survey question asking if a person began riding transit in the last year.  In this 

analysis, new riders were not considered, since these respondents did not have smart 

cards in the “before” period of analysis.  However, it is possible that they may have 

begun using transit because of the availability of real-time information, and this should be 

explored in future research.   

 Another area for improvement pertains to the condition of congruence.  This was 

assessed using the number of train trips in the last week for each respondent by 

comparing each self-reported number of transit trips to the corresponding smart card trip 

history.   As was previously noted, self-reported travel behavior questions are often 

subject to error, particularly recall bias in which respondents cannot correctly remember 

their transit trip-making patterns (Stopher, 2012, p. 142).  Perhaps a better measure of 

congruence is “home” station, since respondents are likely able to recall this easier.  

Another possible improvement is requesting a respondent’s Breeze Card number twice on 

the survey instrument to avoid unintentional errors by the respondent when entering the 

16-digit number.   
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  An extension of using smart card data to evaluate disaggregate transit travel is to 

understand the revenue implications for transit agencies.  In this before-after analysis, the 

fare type used for each trip (e.g. monthly pass, full fare pay as you go, student pass) was 

not considered, but future applications may want to evaluate this important attribute.   

This could be used to calculate the farebox revenue impact of the intervention under 

analysis. 

 A potential challenge to applying this methodology in the future is consistency in 

using smart card “taps” to measure transit trips over time if there are fare policy changes.  

The study period for this analysis was selected during a timeframe when there were no 

known changes in fare policy.  Shortly after the study period, MARTA changed their bus 

open door policy at transfer locations, which could impact the number of “taps” in future 

analyses. 

 Last but not least, a noteworthy challenge to applying this methodology more 

broadly may be privacy concerns on behalf of the transit agency pertaining to the use of 

smart card data (e.g. Dempsey 2008).  Transit agencies may be hesitant (or unwilling) to 

share their data with researchers, particularly if they have stringent privacy policies.   

Conclusions 

 In this study, a methodology was developed to combine smart card fare collection 

data with survey responses to evaluate changes in transit travel behavior over time.  This 

method was applied to an empirical analysis of real-time information in Atlanta.  The 

initial linked smart card/survey dataset began with 494 eligible participants, and 

conditions of panel eligibility, completeness, uniqueness and congruence were 

sequentially applied, resulting in 100 (20%) responses in the final dataset.  Difference of 
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mean tests and regression analysis were used to compare each individual’s monthly 

transit trips from April 2013 to April 2014.  The results for the complete dataset (n=494) 

and Condition 1A (Panel Eligibility of the Intervention) suggest that real-time 

information led to an increase in the overall number of trips made on transit.  However, 

when the remaining conditions were applied and the sample size was reduced, the 

difference in trips from April 2013 to April 2014 was not significantly different between 

the RTI user group and non-user group.  This may because the RTI user group 

consistently took more trips in April 2013 than the group of non-users, which suggests 

that those who use transit more were more likely to adopt RTI.   

 A primary contribution of this research is the methodology to combine smart card 

data with survey responses to evaluate changes in transit travel.  Traditional surveys lack 

a method of accurately measuring travel behavior over extended periods of time (unless 

surveys are repeated), and the smart card dataset advantageously provides a record of 

transit trips needed for before-after or panel analyses.  Similarly, the survey instrument 

can be used to gather socioeconomic information and other characteristics of the 

respondent, which would otherwise be unavailable in a smartcard dataset.  This 

methodology could be used to evaluate other attributes – beyond use of real-time 

information – and more broadly applied for transit marketing and travel behavior 

analyses in the future.  Transit planners and market researchers conducting regular transit 

customer satisfaction surveys could include a few additional questions about smart cards 

– particularly the smart card number – and apply this methodology to evaluate how future 

policy or planning changes impact transit travel.   
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CHAPTER 5 

 

CONCLUSIONS 
 

 

 

 This chapter presents a brief comparison of the key findings from the three studies 

presented in this dissertation: New York City, Tampa, and Atlanta.  This meta-analysis is 

followed by concluding remarks and areas for future research.   

Comparison of Case Study Findings 

 This section presents a comparison of the results of the three studies.  First, New 

York City was the setting for a natural experiment in which real-time bus information 

was gradually launched on a borough-by-borough basis over a three year period.  Panel 

regression techniques were used to evaluate route-level bus ridership for 185 bus routes 

while controlling for changes in transit service, fares, local socioeconomic conditions, 

weather, and other factors.  Two fixed effects models with robust standard errors were 

presented.  The first model, which included real-time information as a single binary 

variable, showed an average increase of approximately 118 rides per route per weekday 

(median increase of 1.7% of weekday route-level ridership) likely attributable to 

providing RTI.  This result is very similar to a prior study conducted in Chicago (Tang 

and Thakuriah 2012) that found an increase of 126 average weekday rides per route 

(approximately 1.8-2.2% of route-level ridership).  The second model, which divided the 

real-time information variable based on quartiles of bus service per route, suggests that 

the ridership increase occurred on the largest routes, and this increase was approximately 

340 rides per weekday on the largest routes (median increase of 2.3% of route-level 

ridership).  One plausible explanation of why the largest routes experienced a significant 
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increase in ridership is that they may be more likely to attract “choice” trips (such as non-

commute trips).  These results suggest that RTI may have the greatest impact on routes 

with higher levels of service.    

 In Tampa, a behavioral experiment was performed with a before-after control 

group design in which access to real-time bus information was the treatment variable.  

Web-based surveys measured behavior changes over a three month study period for 217 

eligible study participants.  The frequency of bus trips per week was evaluated before and 

after the availability of RTI, but there were no significant differences between the RTI 

user group and the control group.  This was not surprising since the majority of bus riders 

in Tampa are transit-dependent, meaning they lack other transportation alternatives.  

Notably, this study also considered other possible benefits to riders, and the results 

suggest that the primary benefits associated with providing RTI to passengers pertain to 

waiting at the bus stop.  Analysis of “usual” wait times revealed a significantly larger 

decrease (nearly 2 minutes) for RTI users compared to the control group, and RTI users 

had significant decreases in levels of anxiety and frustration when waiting for the bus 

compared to the control group.  These findings provide strong evidence that RTI 

significantly improves the passenger experience of waiting for the bus, which is 

notoriously one of the most disliked elements of transit trips.   

Finally, in Atlanta, a methodology to combine smart card fare collection data with 

web-based survey responses was developed to quantify changes in transit travel of 

individual riders in a before-after study.  After joining the smart card data to the survey 

responses, three conditions were imposed to assess if each record accurately reflected an 

individual’s travel behavior.  The first condition necessitated that the respondent began 
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using real-time information in the appropriate timeframe and had the smart card 

sufficiently long to be used in the before-after analysis. The second condition tested if 

one smart card actually represented one traveler, and the third condition verified that the 

smart card number trip history corresponded to the respondent’s stated travel behavior.  

After imposing all three conditions, the dataset was reduced in size from 494 initial 

participants to 100 (20%) usable responses.  Then, difference of means tests and 

regression analysis were used to assess differences in monthly transit trips between real-

time information users and non-users from April 2013 to April 2014.  The results show 

that there was not a significant difference in the change in monthly transit trips between 

the RTI user group and non-user group; however, the final sample size was very small.  

These results, as well as those from the New York City and Tampa studies, are 

summarized in Table 19. 
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Table 19: Comparison of Case Study Findings 

 New York City Tampa Atlanta 

Agency NYCT HART MARTA 

Methodology 
Natural experiment 

with panel regression 

Behavioral experiment 

with a before-after 

control group design 

Before-after analysis 

of transit trips 

Key Findings 

Route-level ridership 

increased by 

approximately 118 

rides on an average 

weekday;  

A second model 

suggests the ridership 

increase only occurred 

on large routes 

Comparison of bus trips 

before and after does not 

suggest a change in 

weekly transit travel;  

The primary benefits 

pertain to the passenger 

waiting time and 

experience 

Difference of mean 

tests and regression 

analysis of changes 

in monthly transit 

trips do not suggest a 

change in transit 

trips among current 

riders  

Unit of 

Analysis 

Route-level bus 

ridership 

Individual (transit 

passenger) 

Individual (transit 

passenger) 

Final Sample 

Size 
185 bus routes 

217 eligible study 

participants 

100 eligible study 

participants 

 

Concluding Remarks 

 The results shown in Table 19 reveal that two of the three studies (Tampa and 

Atlanta) did not find a substantial change in transit trips associated with use of real-time 

information.  However, one study (New York City) did show an increase in ridership 

likely attributable to providing real-time information and was most significant on the 

routes with the greatest level of transit service (measured in revenue miles).  Since New 

York City has substantially more bus service than Atlanta or Tampa in terms of the 

number of routes, the span of service, and the frequency of service on most (if not all) 

routes, this suggests that the potential for ridership gains due to real-time information 

may be greatest in areas that already have high levels of preexisting transit service.   

 One possible explanation for these findings is that real-time information could 

help increase ridership by attracting “choice” trips in areas with high levels of transit 
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service.  When a traveler is considering taking a bus trip versus an alternative mode, 

checking real-time information in locations with high transit service levels may reveal 

that a bus stop is located nearby and that a transit vehicle is only a few minutes away, and 

consequently, the traveler chooses to take that extra trip on the bus.  On the other hand, in 

locations with lower levels of transit service, the traveler may be presented with the 

information that he or she is far from a transit stop or would have to wait for a long 

period of time, and in that situation, the traveler may choose an alternative mode or forgo 

the unnecessary trip.   

 Additional analysis from the Tampa and Atlanta study suggests that, even in 

locations with low levels of transit service provision, real-time information positively 

impacts riders in other ways, such as reducing wait times or the perception thereof.  

While transit agencies serving this type of market may not experience significant 

ridership gains, they are likely to improve the transit riding experience by providing 

passengers with real-time information.  

Future Research 

 Many interesting avenues for future research emerged from this dissertation.  

First, additional research is recommended to evaluate other cities with high levels of 

transit service to better understand when and where real-time information is affecting 

ridership.  For example, future studies could examine the impact of varying headways 

coupled with real-time information on ridership; perhaps on routes with high to medium 

frequencies (e.g. headways less than 20 minutes), real-time information has greater 

potential to increase ridership since consulting real-time information reveals relatively 

short wait times.  Another possible refinement is comparing the ridership impacts of RTI 
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on weekdays (as in the New York City study) with weekends, since weekend travel 

typically includes more discretionary trips.  Yet another possible stratification for future 

research is differentiating the ridership impacts of real-time information between peak 

and off-peak trips.    

 Looking ahead, there are many areas for future research evaluating new and 

emerging transit information sources beyond real-time vehicle location and arrival 

information.  Attributes of transit alternatives that were previously not readily available – 

such as crowding levels – may soon be provided to riders via smartphone applications, 

and this trend is likely to increase as riders become more connected and demand higher 

levels of personalized, dynamic information.  By providing relevant information on key 

issues, operators may enable flexible travelers to make informed decisions that better suit 

their needs, which will hopefully lead to more travelers choosing transit for future trips.    
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APPENDIX A: ADDITIONAL NEW YORK CITY ANALYSES 

  

 Table 20 shows the monthly dummy variables that were estimated with the OLS 

and RE models shown in Table 4.  The reference month is January.   

 

Table 20: Monthly Dummy Variables from the OLS and RE Regression Results 

  
OLS 

Estimate 

RE 

Estimate 

RE AR(1) 

Estimate 

RE ARMA(1,1) 

Estimate 

  (SE) (SE) (SE) (SE) 

February 
744.53 706.79

***
 774.11

***
 811.06

***
 

(640.37) (78.28) (60.19) (58.69) 

March 
1076.22

*
 646.66

***
 815.46

***
 844.82

***
 

(570.99) (70.57) (64.06) (64.43) 

April 
663.62 81.81 302.26

***
 355.29

***
 

(832.57) (105.10) (90.36) (87.42) 

May 
1329.86 660.09

***
 939.16

***
 1028.32

***
 

(830.87) (101.74) (90.29) (87.97) 

June 
770.25 434.44

***
 625.67

***
 721.30

***
 

(1014.96) (124.70) (103.01) (99.18) 

July 
272.74 -148.05 82.97 154.39 

(993.82) (122.90) (101.67) (97.11) 

August 
-147.05 -660.82

***
 -449.21

***
 -387.24

***
 

(1041.86) (127.96) (111.74) (109.28) 

September 
1043.73 684.66

***
 928.22

***
 1031.84

***
 

(871.50) (106.37) (90.37) (88.46) 

October 
1108.38 794.12

***
 1023.56

***
 1116.95

***
 

(776.68) (95.96) (78.03) (75.84) 

November 
364.43 192.50

*
 340.52

***
 414.82

***
 

(773.06) (102.08) (84.85) (83.32) 

December 
-257.32 -405.88

***
 -365.85

***
 -352.98

***
 

(558.03) (78.53) (66.31) (64.63) 

Constant 
42783.04

**
 23030.54

***
 32491.99

***
 38721.18

***
 

(19330.38) (3570.31) (3786.93) (3589.77) 
***

p < 0.01, 
**

p < 0.05, 
*
p < 0.1 
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 Table 21 shows the monthly dummy variables that were estimated with the RE 

and FE models shown in Table 5 and Table 6.   The reference month is January.   

 

 

Table 21: Monthly Dummy Variables from the FE and RE Regression Results 

  Single Bus Time Variable Quartiles of Bus Service 

 

Random Effects Estimate Fixed Effects Estimate Fixed Effects Estimate 

  (SE) (Robust SE) (SE) (Robust SE) (SE) (Robust SE) 

February 
741.475 736.343 737.328 

(74.529)*** (55.784)*** (73.070)*** (56.152)*** (72.961)*** (56.023)*** 

March 
604.792 620.926 620.633 

(66.222)*** (60.433)*** (65.399)*** (59.805)*** (65.305)*** (60.115)*** 

April 
112.587 134.889 135.545 

(104.011) (63.608)* (102.918) (62.220)** (102.775) (62.375)** 

May 
648.763 656.287 656.884 

(97.725)*** (66.094)*** (96.181)*** (64.769)*** (96.041)*** (65.111)*** 

June 
445.53 425.23 423.84 

(123.115)*** (75.221)*** (120.694)*** (71.749)*** (120.524)*** (71.886)*** 

July 
-133.344 -182.398 -185.548 

(120.411) (77.207)* (118.156) (79.564)** (117.990) (79.556)** 

August 
-642.912 -681.253 -685.116 

(121.834)*** (80.790)*** (119.454)*** (85.440)*** (119.287)*** (85.354)*** 

September 
718.078 707.926 708.024 

(105.453)*** (68.256)*** (103.349)*** (65.809)*** (103.196)*** (65.955)*** 

October 
851.279 855.124 857.67 

(95.326)*** (73.605)*** (93.647)*** (71.535)*** (93.518)*** (71.536)*** 

November 
311.315 331.713 333.744 

(96.351)*** (58.463)*** (95.460)*** (54.847)*** (95.332)*** (55.224)*** 

December 
-305.317 -275.612 -275.687 

(76.273)*** (56.841)*** (77.226)*** (54.415)*** (77.121)*** (54.546)*** 

Constant 
22,769.29 21,721.07 21,771.18 

(2568.7)*** (2770.7)*** (2626.5)*** (2312.1)*** (2624.7)*** (2302.7)*** 

* p<0.1; ** p<0.05; *** p<0.01         

Robust Standard errors calculated using the Huber/White/sandwich estimator.  
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APPENDIX B: ADDITIONAL TAMPA ANALYSES 

  

Regression models of the gain scores of trips/week, transfers/week, and usual wait 

time were created to understand the extent to which the experimental design controlled 

for other factors that may influence travel behavior.  The dependent variable in each 

model was the gain score of trips/week, transfers/week and usual wait time, respectively.  

Unless otherwise noted, the independent variables were from categorical survey 

questions and were modeled as binary variables.  The independent variables included the 

following: 

 used real-time information (RTI),  

 age,  

 annual household income,  

 gender,  

 employment status,  

 ethnicity (multiple ethnicities and Asian included in “other”),  

 household size (continuous variable from 1 to 6) 

 household automobile ownership (continuous variable from 0 to 3),  

 having a valid license,  

 sold a car during the study period,  

 bought a car during the study period,   

 got a license during the study period, 

 lost a license during the study period,   

 moved household or job/school locations during the study period, and 
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 changed usual bus routes during the study period (only in the usual wait time 

model).   

 The results of the three regression models are shown in Table 22.  In the 

regression model for the difference in trips per week shown in the leftmost column, the 

variable representing use of RTI was not significant.  The only variable that was 

statistically significantly to the 1% confidence level was the binary variable for having a 

valid driver’s license.  The interpretation of this coefficient implies that study participants 

with valid driver’s license decreased their bus travel by 1.28 trips per week, holding all 

else equal, over the study period.    

 The regression model for the difference in transfers per week is shown in the 

middle column of Table 22, and again, the variable representing the use of RTI was not 

statistically significant.  Only one variable was statistically significant to the 1% 

confidence level, and this was the binary variable for participants between 25 and 34 

years of age.  It is unclear why this group significantly decreased their transit travel over 

the study period.   

 The regression model for the difference in usual wait times (in minutes) is 

presented in the rightmost column of Table 22.  This model has one more independent 

variable than the previous two models, and this variable is for participants who changed 

the bus route that they ride most frequently during the study period (shown at the 

bottom).  The noteworthy result from this model is that the use of RTI significantly 

decreased the usual wait time by approximately 2.19 minutes, holding all else equal.  

Three other variables were statistically significant: gender, participants age 45 to 54 and 

those age 55 to 64.  It is unclear why these groups had significant changes in self-
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reported usual wait times over the course of the study.   In summary, the three regression 

results did not differ substantially from the conclusions presented in previous sections.   

 Last, the perceived behavior, feeling, and satisfaction changes of the experimental 

group were compared to the actual (self-reported) differences from the before survey to 

the after survey.  Tables 23, 24 and 25 show the results of this analysis for behavior 

changes, feeling changes, and satisfaction changes, respectively.  
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Table 22: Regression Models for Difference in Trips, Transfers and Usual Wait Time 

Ordinary Least Squares  (OLS)  

Regression Results 

Difference in 

Trips/Week 

Difference in 

Transfers/Week 

Difference in 

Usual Wait 

Time (minutes) 

Category Variable Beta T-stat Beta T-stat Beta T-stat 

  Intercept -1.09 -0.76 1.16 0.63 3.07 1.55 

Used RTI Used RTI 0.05 0.09 0.29 0.44 -2.19 -3.17 

Age 

Age 18-24 (reference) - - - - - - 

Age 25-34 0.04 0.04 -2.47 -2.00 -2.63 -1.96 

Age 35-44 -0.47 -0.47 -1.91 -1.56 -2.54 -1.88 

Age 45-54 0.75 0.70 -1.43 -1.08 -3.11 -2.11 

Age 55-64 0.66 0.55 -1.78 -1.15 -3.70 -2.21 

Age 65 and over 0.87 0.47 -0.92 -0.37 -1.96 -0.74 

Annual 

Household 

Income 

Under $5,000 (reference) - - - - - - 

$5,000 to $9,999 1.92 1.76 1.23 0.90 0.80 0.54 

$10,000 to $19,999 0.99 1.01 0.20 0.16 -0.99 -0.74 

$20,000 to $29,999 1.35 1.29 1.17 0.89 1.24 0.87 

$30,000 to $39,999 0.95 0.83 0.30 0.20 0.26 0.16 

$40,000 to $49,999 0.02 0.01 -0.39 -0.22 -0.99 -0.55 

$50,000 or more 2.20 1.85 2.17 1.44 0.89 0.54 

Employment 

Status 

Employed Full Time 

(reference) 
- - - - - - 

Employed Part Time 0.62 0.78 0.78 0.79 -0.65 -0.60 

Unemployed -1.07 -1.04 -0.41 -0.32 -0.86 -0.61 

Retired 0.69 0.54 0.52 0.29 1.35 0.70 

Student 0.81 0.92 1.07 0.98 -1.59 -1.31 

Other (disabled, etc.) 0.17 0.11 -1.01 -0.56 0.53 0.26 

Ethnicity 

White (reference) - - - - - - 

Black or African American 0.34 0.52 -0.47 -0.56 -1.80 -1.94 

Hispanic or Latino 0.33 0.39 -0.14 -0.14 1.11 0.97 

Other (Includes Asian & 

Mixed Race) 
-0.33 -0.36 -0.25 -0.21 2.15 1.73 

Household 

Size 
Number People in Household -0.04 -0.16 

0.31 1.09 -0.47 -1.55 

Cars Number of Cars in Household -0.43 -1.21 -0.68 -1.38 0.43 0.87 

License Has a Valid License -1.28 -2.24 -1.29 -1.83 -0.52 -0.66 

Gender Female 0.58 1.17 -0.22 -0.35 1.41 2.06 

Changes 

During the 

Study Period 

Got a Car -2.08 -1.93 -3.31 -1.96 0.09 0.06 

Sold a Car  -2.24 -1.14 -2.95 -1.26 1.86 0.69 

Got a Driver's License -0.68 -0.59 -0.97 -0.70 -1.11 -0.70 

Moved Household/Job 

Location 
-0.11 -0.16 

0.39 0.43 0.33 0.34 

Switched Usual Bus Route  Not included Not included 1.20 1.31 

Summary 

Statistics 

Degrees of Freedom 172 144 165 

F-statistic 1.182 0.926 1.183 

R-squared 0.161 0.153 0.172 

Adjusted R-squared 0.025 -0.012 0.027 
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Table 23: Comparison of Perceived and Before-After Changes in Behavior 

*Perceived Changes: Has using OneBusAway changed… Before-After (Self-Reported) Change Statistics** 

The number of HART bus trips that you take? Decreased Same Increased Total Sample Size 

I ride HART buses (much or somewhat) more often 15% 10% 14% 39% 108 

I ride HART buses about the same 25% 22% 13% 60% Pearson's R 

I ride HART buses (much or somewhat) less 1% 0% 0% 1% 0.129 

Total 41% 32% 27% 100%   

The number of transfers that you make on HART buses? Decreased Same Increased Total Sample Size 

I transfer (much  or somewhat) more often 5% 4% 9% 18% 93 

I transfer about the same 23% 24% 31% 77% Pearson's R 

I transfer (much or somewhat) less 3% 1% 0% 4% 0.138 

Total 31% 29% 40% 100%   

The amount of time you wait at the bus stop? Decreased Same Increased Total Sample Size 

I spend (much or somewhat) more time waiting 4% 2% 0% 6% 107 

I spend about the same time waiting at the bus stop 14% 10% 7% 31% Pearson's R 

I spend (much or somewhat) less time waiting 34% 21% 8% 64% 0.009 

Total 51% 34% 15% 100%   

*Values rounded to the nearest whole percent.  

**Sample sizes may differ from previous figures/tables due to varying response rates to multiple questions. 
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Table 24: Comparison of Perceived and Before-After Changes in Feelings 

*Perceived Changes: Since you began using OneBusAway, do you… Before-After (Self-Reported) Change Statistics** 

Feel safer when waiting for the bus at night Decreased Same Increased Total Sample Size 

Agree (somewhat or strongly) 6% 10% 8% 23% 105 

Neutral 11% 27% 14% 52% Pearson's R 

Disagree (somewhat or strongly) 9% 11% 5% 25% 0.115 

Total 26% 48% 27% 100%   

Feel safer when waiting for the bus during the daytime Decreased Same Increased Total Sample Size 

Agree (somewhat or strongly) 8% 18% 13% 39% 104 

Neutral 5% 28% 12% 44% Pearson's R 

Disagree (somewhat or strongly) 3% 9% 5% 16% 0.011 

Total 15% 55% 30% 100%   

Feel more relaxed when waiting for the bus Decreased Same Increased Total Sample Size 

Agree (somewhat or strongly) 18% 33% 17% 69% 105 

Neutral 5% 12% 9% 26% Pearson's R 

Disagree (somewhat or strongly) 3% 2% 1% 6% 0.008 

Total 26% 48% 27% 100%   

*Values rounded to the nearest whole percent.  

**Sample sizes may differ from previous figures/tables due to varying response rates to multiple questions. 
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Table 25: Comparison of Perceived and Before-After Changes in Satisfaction 

*Perceived Changes: Since you began using OneBusAway, do you… Before-After Satisfaction Change Statistics** 

  Overall HART Bus Service 

Feel more satisfied riding HART buses? Decreased Same Increased Total Sample Size 

Agree (somewhat or strongly) 11% 47% 11% 70% 105 

Neutral 3% 18% 6% 27%   

Disagree (somewhat or strongly) 1% 3% 0% 4% Pearson's R 

Total 15% 68% 17% 100% -0.010 

  How Long You Have to Wait 

Feel more satisfied riding HART buses? Decreased Same Increased Total Sample Size 

Agree (somewhat or strongly) 14% 28% 28% 70% 104 

Neutral 6% 13% 7% 26%   

Disagree (somewhat or strongly) 2% 1% 1% 4% Pearson's R 

Total 22% 42% 36% 100% 0.134 

  How Often the Bus Arrives at Stop On Time 

Feel more satisfied riding HART buses? Decreased Same Increased Total Sample Size 

Agree (somewhat or strongly) 9% 33% 27% 70% 106 

Neutral 4% 15% 8% 26%   

Disagree (somewhat or strongly) 0% 4% 0% 4% Pearson's R 

Total 13% 52% 35% 100% 0.100 

*Values rounded to the nearest whole percent.  

**Sample sizes may differ from previous figures/tables due to varying response rates to multiple questions. 
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APPENDIX C: ADDITIONAL ATLANTA ANALYSES 

  

 This appendix includes four additional MARTA analyses.  First, a set of 

regression models with all of the independent variables considered in the analysis is 

shown in Table 26.  The dependent variable was the difference in monthly trips 

(precisely, four weeks) from 2013 to 2014 from the smart card trip history, and the 

independent variables included retrospective survey questions, such as awareness of 

service changes and socioeconomic changes, as well as many other socioeconomic 

characteristics of the respondent.  Only two variables (African American and having a 

driver’s license) were consistently significant when all of the conditions were applied.  

 In Table 27, the socioeconomic characteristics of the study participants are shown 

for each of condition, and these statistics were also compared to the 2013 system-wide 

survey conducted by MARTA, which is shown in the rightmost column of Table 27.  

There are two noteworthy differences between the two surveys: ethnicity and income.   

 Table 28 and Table 29 present additional analysis of survey questions that were 

asked of real-time information (RTI) users in order to understand perceived changes in 

behavior and feelings.  Toward the end of the survey questionnaire, RTI users were asked 

about potential behavior and feeling changes since they began using RTI, including the 

following: the number of trips they make on MARTA, their waiting time, their perception 

of safety, and their overall satisfaction with MARTA service.  These questions were 

asked separately for MARTA bus service (shown in Table 28) and MARTA train service 

(shown in Table 29).  Last, it should be noted that these questions were similar to the 

perception questions from the Tampa study.    
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Table 26: Regression Analysis of Difference in Transit Trips with All Independent Variables 

Regression of Difference in Trips  Full  1A 1B 2A 2B 2C 3A 3B 

Intercept 19.65
**

 23.60
***

 34.34
***

 34.27
***

 42.16
***

 36.75
***

 31.07
**

 18.89 

 
(8.31) (8.67) (10.66) (10.65) (9.64) (11.43) (12.53) (18.88) 

Use Real-Time Information 5.09
**

 4.24
*

 2.31 -0.44 -0.67 -2.14 -1.82 0.37 

 
(2.35) (2.47) (3.00) (2.94) (2.74) (3.29) (3.40) (4.14) 

Aware of MARTA Service Changes 
0.60 0.20 0.41 4.15 4.85

*

 6.19
*

 7.73
**

 7.49
*

 

(2.27) (2.47) (2.91) (2.90) (2.69) (3.29) (3.40) (4.12) 

Employed Part Time 3.04 2.32 -2.51 0.11 0.46 2.33 0.64 -0.74 

 
(3.64) (3.91) (5.14) (4.95) (4.60) (6.08) (6.72) (9.48) 

Unemployed -8.82 -11.62
*

 -13.37
*

 0.10 -1.58 2.02 9.42 3.39 

 
(6.04) (6.72) (7.53) (7.41) (7.42) (8.01) (7.84) (9.51) 

Student -3.04 -3.57 -4.12 -4.76 -1.02 -2.70 2.61 -1.41 

 
(3.43) (3.68) (4.61) (4.64) (4.44) (5.24) (5.77) (7.74) 

Retired 1.24 0.65 2.08 1.70 0.59 0.27 4.92 6.93 

 
(11.50) (11.50) (14.45) (12.26) (10.89) (11.78) (11.35) (13.79) 

Other Employment -4.56 -5.43 -4.94 -4.46 1.39 3.25 4.96 6.45 

 
(11.56) (11.52) (11.60) (11.23) (12.13) (12.85) (12.10) (14.02) 

Has a License -16.95
***

 -16.35
***

 -25.75
***

 -32.14
***

 -42.75
***

 -43.25
***

 -48.55
***

 -40.54
***

 

 
(4.62) (4.91) (6.69) (7.14) (6.69) (7.71) (8.70) (10.35) 

Number of Cars in Household -2.32 -4.33
**

 -4.01
*

 -3.54 -0.69 0.51 1.07 1.88 

 
(1.84) (1.98) (2.39) (2.28) (2.18) (2.66) (2.99) (3.80) 

Household Size -1.02 -0.18 0.47 -0.13 -1.31 -1.17 -0.13 0.41 

 
(1.31) (1.40) (1.68) (1.67) (1.64) (1.90) (1.99) (2.87) 

Increased Household Size 5.17 6.24 3.83 5.46 6.35 6.98 -2.77 -2.06 

 
(4.54) (4.63) (5.10) (4.99) (4.67) (5.85) (6.06) (7.35) 

Decreased Household Size -11.87 -9.83 -11.03 -9.37 -7.90 -6.25 -9.97 -3.69 

 
(11.26) (11.26) (12.40) (10.45) (9.33) (12.04) (11.76) (14.00) 

Increased Cars in Household -9.74
**

 -9.05
**

 -6.22 -5.30 -2.72 -4.48 -4.97 -2.72 

 
(4.17) (4.30) (5.09) (4.93) (4.87) (5.75) (5.66) (7.39) 
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Table 26 (continued): Regression Analysis of Difference in Transit Trips with All Independent Variables 

Regression (Continued)  Full  1A 1B 2A 2B 2C 3A 3B 

Decreased Cars in Household 0.95 2.46 2.70 2.51 3.25 2.85 2.19 1.93 

 
(5.18) (5.51) (6.95) (6.28) (6.98) (8.15) (8.56) (10.99) 

Changed Household Location 3.42 3.29 -1.59 1.87 0.64 -0.15 0.66 5.00 

 
(2.65) (2.85) (3.56) (3.66) (3.68) (4.44) (4.58) (5.52) 

Changed Jobs 3.67 1.63 -2.17 -0.15 1.86 -0.24 1.27 -1.36 

 
(2.64) (2.87) (3.62) (3.78) (3.56) (4.46) (4.54) (6.00) 

Got a License 1.83 -0.95 -5.54 -15.21 -16.73 -14.09 -20.33 - 

 
(9.20) (9.99) (13.39) (13.70) (12.10) (12.80) (18.37) - 

Lost a License 9.81 10.85 - - - - - - 

 
(15.99) (16.06) - - - - - - 

Male -0.61 0.81 -0.98 1.73 0.97 1.73 0.75 3.66 

 
(2.26) (2.43) (2.98) (2.95) (2.78) (3.32) (3.35) (4.05) 

Age 18 to 24 13.79
*

 13.83
*

 14.10 9.27 4.84 6.97 12.74 9.92 

 
(7.12) (7.36) (9.09) (8.41) (7.78) (9.27) (10.01) (14.97) 

Age 25 to 34 4.15 2.54 1.08 6.05 4.02 7.96 15.61
*

 12.26 

 
(6.33) (6.56) (7.75) (7.35) (6.63) (8.20) (8.38) (13.79) 

Age 35 to 44 3.99 0.26 0.65 1.33 3.32 4.37 10.44 11.64 

 
(6.47) (6.75) (7.91) (7.52) (6.76) (8.38) (8.74) (14.08) 

Age 45 to 64 2.68 -1.03 -2.86 -2.27 -0.38 2.53 10.47 9.65 

 
(6.82) (7.21) (8.33) (8.02) (7.41) (8.94) (9.17) (14.39) 

Hispanic 2.41 4.38 6.24 5.54 7.98 6.57 1.72 2.28 

 
(5.81) (6.00) (6.89) (7.00) (6.74) (7.71) (8.85) (11.38) 

African American 17.76
***

 15.95
***

 14.50
***

 20.83
***

 16.79
***

 19.35
***

 24.73
***

 17.33
**

 

 
(3.77) (4.10) (4.83) (4.97) (5.06) (6.02) (6.19) (7.20) 

Asian -2.12 -5.27 -6.71 -5.06 -4.37 -7.04 0.57 1.38 

 
(4.07) (4.37) (5.03) (4.59) (4.29) (5.65) (6.05) (7.67) 

Other Race 0.41 -0.17 -2.36 7.27 8.54 12.19 2.74 3.39 

 
(7.70) (7.73) (10.69) (10.13) (9.06) (9.89) (11.25) (12.56) 
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Table 26 (continued): Regression Analysis of Difference in Transit Trips with All Independent Variables 

Regression (Continued)  Full  1A 1B 2A 2B 2C 3A 3B 

Household Income Less than 

$30,000 
2.91 1.03 6.24 1.47 1.32 0.00 -3.09 0.05 

 
(3.87) (4.13) (5.17) (4.79) (4.60) (5.70) (6.10) (7.46) 

Household Income $30,000-$50,000 -3.45 -4.69 -3.67 -2.62 -3.92 -2.13 -1.71 0.48 

 
(3.47) (3.72) (4.53) (4.51) (4.28) (5.13) (5.34) (7.03) 

Household Income $50,000-$75,000 -0.15 -0.98 -3.06 -0.72 0.36 2.85 5.49 6.99 

 
(3.19) (3.43) (4.12) (4.00) (3.65) (4.41) (4.54) (5.59) 

Number of Observations# 452 393 277 203 179 146 122 93 

R
2

 0.23 0.22 0.27 0.37 0.44 0.44 0.49 0.38 

Adj. R
2

 0.17 0.16 0.18 0.27 0.33 0.30 0.33 0.12 
***

p < 0.01, 
**

p < 0.05, 
*

p < 0.1, (standard error), #Number of observations reduced from previous sample sizes due to missing responses 
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Table 27: Socioeconomic Characteristics of Survey Participants 
    All Data 1A 1B 2A 2B 2C 3A 3B System 

    # % # % # % # % # % # % # % # % % 

  Grand Total* 494 100% 431 100% 305 100% 219 100% 193 100% 159 100% 135 100% 100 100% 100% 

H
o

u
se

h
o

ld
 I

n
co

m
e 

Under $10,000 20 4% 16 4% 8 3% 8 4% 5 3% 4 3% 3 2% 3 3% 20% 

$10,000 to $19,999 28 6% 25 6% 13 4% 10 5% 8 4% 8 5% 7 5% 4 4% 19% 

$20,000 to $29,999 48 10% 45 10% 31 10% 24 11% 21 11% 17 11% 13 10% 12 12% 21% 

$30,000 to $39,999 34 7% 32 7% 19 6% 9 4% 8 4% 7 4% 4 3% 2 2% 13% 

$40,000 to $49,999 40 8% 34 8% 24 8% 18 8% 14 7% 10 6% 10 7% 7 7% 7% 

$50,000 to $74,999 83 17% 72 17% 52 17% 34 16% 34 18% 28 18% 23 17% 20 20% 9% 

Over $75,000 212 43% 181 42% 138 45% 105 48% 92 48% 75 47% 65 48% 45 45% 11% 

No Answer 29 6% 26 6% 20 7% 11 5% 11 6% 10 6% 10 7% 7 7% - 

E
th

n
ic

it
y

 

Amer. Indian 2 0% 2 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0% 

Asian** 40 8% 36 8% 26 9% 22 10% 19 10% 13 8% 10 7% 8 8% 3% 

Black 57 12% 50 12% 39 13% 24 11% 17 9% 14 9% 11 8% 9 9% 76% 

White 368 74% 318 74% 226 74% 165 75% 150 78% 125 79% 108 80% 78 78% 15% 

Other  12 2% 12 3% 7 2% 5 2% 4 2% 4 3% 3 2% 3 3% 5% 

No Answer 15 3% 13 3% 7 2% 3 1% 3 2% 3 2% 3 2% 2 2% - 

S
p

an
is

h
 

Not Hispanic 461 93% 401 93% 285 93% 207 95% 183 95% 150 94% 128 95% 95 95% 94% 

Hispanic 20 4% 19 4% 13 4% 8 4% 7 4% 6 4% 4 3% 3 3% 6% 

No Answer 13 3% 11 3% 7 2% 4 2% 3 2% 3 2% 3 2% 2 2% - 

G
en

d
er

 

Female 232 47% 207 48% 133 44% 91 42% 81 42% 59 37% 51 38% 39 39% 49% 

Male 246 50% 211 49% 163 53% 123 56% 107 55% 95 60% 79 59% 59 59% 51% 

No Answer 16 3% 13 3% 9 3% 5 2% 5 3% 5 3% 5 4% 2 2% - 

A
g

e 

Under 24*** 62 13% 57 13% 25 8% 20 9% 16 8% 13 8% 11 8% 10 10% 23% 

25 to 34 229 46% 204 47% 141 46% 99 45% 88 46% 72 45% 61 45% 46 46% 26% 

35 to 44 113 23% 96 22% 79 26% 61 28% 54 28% 44 28% 37 27% 27 27% 18% 

45 to 54 56 11% 43 10% 38 12% 24 11% 20 10% 17 11% 14 10% 10 10% 18% 

55 to 64 19 4% 18 4% 15 5% 11 5% 11 6% 9 6% 8 6% 4 4% 12% 

65 or older 3 1% 3 1% 1 0% 1 0% 1 1% 1 1% 1 1% 1 1% 3% 

No Answer 12 2% 10 2% 6 2% 3 1% 3 2% 3 2% 3 2% 2 2% - 

  System-wide numbers in the rightmost column from MARTA's 2013 Quality of Service Report.   

  *Percentages rounded to whole numbers. ** MARTA's Asian category includes Asian Indian. ***Georgia Tech survey did not include those under age 18. 
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Table 28: Perceived Changes when Riding MARTA Buses 
    All Data 1A 1B 2A 2B 2C 3A 3B 

  Grand Total 302 100% 239 100% 166 100% 114 100% 99 100% 77 100% 60 100% 38 100% 

B
u

s 
T

ri
p

s 

I ride MARTA buses much more often 19 6% 15 6% 10 6% 6 5% 5 5% 5 6% 3 5% 1 3% 

" somewhat more often 52 17% 44 18% 31 19% 21 18% 18 18% 15 19% 9 15% 6 16% 

" about the same 83 27% 61 26% 39 23% 26 23% 21 21% 15 19% 13 22% 9 24% 

" somewhat less often 1 0% 1 0% 1 1% 0 0% 0 0% 0 0% 0 0% 0 0% 

" much less often 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 

I usually don't check bus RTI 13 4% 13 5% 10 6% 6 5% 5 5% 5 6% 5 8% 3 8% 

I usually don't ride MARTA buses 131 43% 102 43% 73 44% 55 48% 50 51% 37 48% 30 50% 19 50% 

No Answer 3 1% 3 1% 2 1% 0 0% 0 0% 0 0% 0 0% 0 0% 

W
ai

ti
n

g
 T

im
e 

I spend much more time waiting 2 1% 1 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 

" somewhat more  4 1% 4 2% 2 1% 1 1% 0 0% 0 0% 0 0% 0 0% 

" about the same 33 11% 25 10% 16 10% 13 11% 10 10% 9 12% 7 12% 5 13% 

" somewhat less  65 22% 50 21% 37 22% 25 22% 22 22% 18 23% 13 22% 9 24% 

" much less 48 16% 39 16% 26 16% 14 12% 12 12% 8 10% 5 8% 2 5% 

I usually don't check bus RTI  9 3% 9 4% 7 4% 4 4% 3 3% 3 4% 3 5% 2 5% 

I usually don't ride MARTA buses 138 46% 108 45% 76 46% 57 50% 52 53% 39 51% 32 53% 20 53% 

No Answer 3 1% 3 1% 2 1% 0 0% 0 0% 0 0% 0 0% 0 0% 

P
er

so
n

al
 S

ec
u

ri
ty

 I feel much safer when waiting 10 3% 9 4% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 

" somewhat safer 21 7% 20 8% 15 9% 10 9% 9 9% 7 9% 5 8% 3 8% 

" about the same 119 39% 87 36% 63 38% 41 36% 33 33% 26 34% 19 32% 12 32% 

" somewhat less safe 2 1% 2 1% 1 1% 0 0% 0 0% 0 0% 0 0% 0 0% 

" much less safe 1 0% 1 0% 1 1% 1 1% 1 1% 1 1% 1 2% 1 3% 

I usually don't check bus RTI  10 3% 10 4% 8 5% 5 4% 4 4% 4 5% 3 5% 2 5% 

I usually don't ride MARTA buses 136 45% 107 45% 76 46% 57 50% 52 53% 39 51% 32 53% 20 53% 

No Answer 3 1% 3 1% 2 1% 0 0% 0 0% 0 0% 0 0% 0 0% 

S
at

is
fa

ct
io

n
 

I feel much more satisfied  31 10% 24 10% 13 8% 9 8% 8 8% 6 8% 3 5% 1 3% 

" somewhat more  66 22% 53 22% 39 23% 26 23% 23 23% 18 23% 13 22% 10 26% 

" about the same 49 16% 37 15% 26 16% 16 14% 11 11% 8 10% 6 10% 3 8% 

" somewhat less  8 3% 7 3% 4 2% 2 2% 2 2% 2 3% 2 3% 1 3% 

" much less 2 1% 1 0% 1 1% 1 1% 1 1% 1 1% 1 2% 1 3% 

I usually don't check bus RTI  8 3% 8 3% 6 4% 4 4% 3 3% 3 4% 3 5% 2 5% 

I usually don't ride MARTA buses 135 45% 106 44% 75 45% 56 49% 51 52% 39 51% 32 53% 20 53% 

No Answer 3 1% 3 1% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 
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Table 29: Perceived Changes when Riding MARTA Trains 
    All Data 1A 1B 2A 2B 2C 3A 3B 

  Grand Total 302 100% 239 100% 166 100% 114 100% 99 100% 77 100% 60 100% 38 100% 

T
ra

in
 T

ri
p

s 

I ride MARTA trains much more  21 7% 16 7% 10 6% 5 4% 4 4% 4 5% 2 3% 2 5% 

" somewhat more often 32 11% 26 11% 20 12% 16 14% 14 14% 8 10% 7 12% 4 11% 

" about the same 209 69% 163 68% 112 67% 79 69% 71 72% 57 74% 46 77% 29 76% 

" somewhat less often 1 0% 1 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 

" much less often 1 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 

I usually don't check train RTI 29 10% 24 10% 18 11% 11 10% 8 8% 7 9% 4 7% 2 5% 

I usually don't ride MARTA trains 6 2% 6 3% 4 2% 3 3% 2 2% 1 1% 1 2% 1 3% 

No Answer 3 1% 3 1% 2 1% 0 0% 0 0% 0 0% 0 0% 0 0% 

W
ai

ti
n

g
 T

im
e 

I spend much more time waiting 3 1% 3 1% 1 1% 1 1% 0 0% 0 0% 0 0% 0 0% 

" somewhat more  3 1% 2 1% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 

" about the same 83 27% 57 24% 42 25% 28 25% 26 26% 23 30% 14 23% 9 24% 

" somewhat less  123 41% 100 42% 70 42% 50 44% 43 43% 30 39% 28 47% 20 53% 

" much less 53 18% 46 19% 32 19% 21 18% 20 20% 16 21% 13 22% 7 18% 

I usually don't check train RTI 31 10% 25 10% 18 11% 13 11% 10 10% 8 10% 5 8% 2 5% 

I usually don't ride MARTA trains 3 1% 3 1% 1 1% 1 1% 0 0% 0 0% 0 0% 0 0% 

No Answer 3 1% 3 1% 2 1% 0 0% 0 0% 0 0% 0 0% 0 0% 

P
er

so
n

al
 S

ec
u

ri
ty

 I feel much safer when waiting 13 4% 11 5% 1 1% 0 0% 0 0% 0 0% 0 0% 0 0% 

" somewhat safer 31 10% 26 11% 15 9% 13 11% 11 11% 7 9% 6 10% 6 16% 

" about the same 215 71% 167 70% 126 76% 85 75% 76 77% 60 78% 48 80% 28 74% 

" somewhat less safe 2 1% 2 1% 1 1% 1 1% 1 1% 1 1% 1 2% 1 3% 

" much less safe 2 1% 1 0% 1 1% 0 0% 0 0% 0 0% 0 0% 0 0% 

I usually don't check train RTI 33 11% 26 11% 19 11% 14 12% 11 11% 9 12% 5 8% 3 8% 

I usually don't ride MARTA trains 3 1% 3 1% 1 1% 1 1% 0 0% 0 0% 0 0% 0 0% 

No Answer 3 1% 3 1% 2 1% 0 0% 0 0% 0 0% 0 0% 0 0% 

S
at

is
fa

ct
io

n
 

I feel much more satisfied 43 14% 32 13% 18 11% 13 11% 13 13% 11 14% 7 12% 5 13% 

" somewhat more  131 43% 105 44% 82 49% 62 54% 53 54% 39 51% 32 53% 18 47% 

" about the same 84 28% 64 27% 40 24% 21 18% 19 19% 16 21% 13 22% 10 26% 

" somewhat less  7 2% 6 3% 4 2% 3 3% 3 3% 2 3% 2 3% 1 3% 

" much less 2 1% 2 1% 1 1% 1 1% 1 1% 1 1% 1 2% 1 3% 

I usually don't check train RTI 29 10% 24 10% 18 11% 13 11% 10 10% 8 10% 0 0% 0 0% 

I usually don't ride MARTA trains 3 1% 3 1% 1 1% 1 1% 0 0% 0 0% 5 8% 3 8% 

No Answer 3 1% 3 1% 2 1% 0 0% 0 0% 0 0% 0 0% 0 0% 

 


