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Executive Summary

A comprehensive study was conducted on mechanical analysis of stand-off anchor bolt
connections with uneven stand-off distances. A new technique is introduced to calculate
the resistive forces provided by each anchor bolt in the group in response to acting fatigue-
level loads on the superstructure. The technique is able to accurately capture the resistive
forces that are otherwise unaccounted for using current design and analysis methods, as
well as codified provisions. The technique comprehensive, and is applicable for any stand-
off anchor bolt connection with even and uneven stand-off distances, as well as differing
anchor bolt size and spacing. The study evaluated connections with these conditions using
the analytical technique and numerical finite element analysis, and further validated from
experimental field data collected on a stand-off anchor bolt connection with uneven stand-
off distances that was used to support a cantilever-type highway overhead sign support
structure.

Vi



1 INTRODUCTION

1.1 Overview

The clearance distance (a.k.a. stand-off distance) of the anchor bolt for double-nut
moment joint connections is the distance between the bottom of the leveling nut and the
top of concrete foundation. The functionality of the anchor bolts is to translate the applied
loads to the foundation. There are two types of anchor bolt connections that are used in
sign and signal support structures. The first type is the base plate directly mounted to the
concrete foundation surface. The second one is the double-nut moment joint, in which the
anchors are attached to a stand-off base plate from the concrete surface with double nuts.
Previous research has revealed that the anchor bolts stand-off distances have two
uniformities: anchors with a uniform stand-off distance and with non-uniform stand-off
distances. Figure 1.1-a) exhibits a double nut moment joint with anchors having a uniform
stand-off distance. The uniform stand-off distance criterion is that the anchors are having
the same stand-off distance. The schematic illustrated in Error! Reference source not
found.-b) indicates the case of anchors with non-uniform stand-off distances. It can be
observed from the figure that the inclination of the concrete surface imposes an irregular
distribution of the anchor bolts stand-off distances. In other words, the anchor bolts are
having diverse stand-off distances. This case is resulted from topographical limitations and
leveling practices during construction.
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Figure 1.1 Double-nut moment joint

The behavior of anchors with uniform stand-off distances has been the focus of the
previous studies. The case of anchors with non-uniform stand-off distances was solely
observed by ALDOT/UAB Project #930-680 in 2009, in which the research was focused
to study the fatigue loads for overhead sign structures. The photo indicated in Figure 1.2
was captured from the project. The figure demonstrates the in-situ double-nut moment joint
with anchors having non-uniform stand-off distances. It can be observed that the two
anchor bolts at the left-bottom section have stand-off distances greater than the other
anchors in the group.



Figure 1.2 Anchor bolts with non-uniform stand-off distances (Fouad et al. 2009)
1.2 Problem Statement

The results induced from the analysis of the data assembled from ALDOT/UAB Project
#930-680 in 2009, have revealed the necessity to understand the behavior of anchors with
non-uniform stand-off distances. The overhead sign structure was equipped by eight anchor
bolts, each of which has an attached uniaxial strain gauge to measure the axial strain under
service loading. The photo indicated in Figure 1.3 exhibits a close-up view of a uniaxial
strain gauge attached to an anchor bolt within the group of anchors. The anchor bolts stand-
off distances were ranged between 0.8125-in and 3.375-in.

Figure 1.3 Uniaxial strain gauge mounted on an anchor bolt (Fouad et al. 2009)

The strain data collected from the in-situ experimental work were analyzed by Hosch
(2013). In general, the results showed a severe irregular stress distribution within the
anchor group. This can be seen in Figure 1.4 that indicates the layout of the anchor bolts
with respect to the stress distribution ranges, for wind loading measured normal to the face
of the structure. The anchor group experienced stresses ranged between 12-Mpa (1.75-ksi)
and approximately 90-Mpa (13-ksi). The highest stresses were found to be in anchors AB-
7 and AB-8, in which those two anchors possess the highest stand-off distances.
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Figure 1.4 Anchors group orientation with respect to the stress ranges (Hosch 2013)

Figure 1.5 exhibits a comparison between the experimental stress ranges, constant
amplitude fatigue limit (CAFL), and the fatigue stresses calculated using AASHTO
Standard Specifications for Structural Supports for Highway Signs, Luminaries, and
Traffic Signals (2013) [hereafter referred to as the 2013 Supports Specifications]. The
figure indicates that anchor bolts (AB-7 and AB-8) have stress ranges equal to 89.3-MPa
(12.95-ksi) and 58.6-MPa (8.5-ksi), respectively. Those stresses were found to be higher
than the constant amplitude fatigue limit (CAFL) of 48.3-MPa (7-ksi) that specified by the
2013 Supports Specifications.
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Figure 1.5 Comparison of fatigue stress ranges in anchor bolts (Hosch 2013)
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It should be noted that the joint was originally designed for infinite life for fatigue. The
results and discussion illustrated above indicate that the structure life would be finite. Such
alteration may result in a premature fatigue failure, with other possibilities of much more
severe consequences in the events of extreme wind. Therefore, this project was launched
to investigate the behavior of load distribution on the anchor bolts with non-uniform stand-
off distances.

1.3 Project Objectives

The main objective of this research is to investigate the effect of non-uniform stand-off
distances on the stress distribution of the anchor bolts within the double-nut moment joint
connection. Three specific objectives were considered to fulfill the main objective:

1. Perform analytical study to identify the mechanical relationships that govern the
behavior of the connection with respect to non-uniform stand-off distances.

2. Perform numerical study using finite element analysis (FEA) to validate the
developed mechanical relationships.

3. Propose design methodology applicable for evaluating the stresses on the anchor
bolts with uniform and non-uniform stand-off distances.

1.4 Organization of the Report

This section provides the outlines of the report. A concise description of the work
associated with each chapter will be expressed:

Chapter 2 * Provide a review of the previous work that is directly
BACKGROUND related to the scope of this study.

* A detail investigation of the development of the

Chapter 3 analytical relationships used to evaluate the staining
ANALYTICAL STUDY actions on the anchor bolts with non-uniform stand-off
distances.

* A detail desccription of the DOE program.

Chapter 4 * Implement an FEA model using SAP2000 software.
NUMERICAL STUDY * Verify the numerical model then display the DOE
program.



Chapter 6
P « Adetailed analysis of the results induced from the

RDﬁgLéb-gg f(‘)NND analytical study and the numerical study.

Chapter 7 * Provide a description of how the objectives were addressed
DISCUSSIONS AND throughout the study and a berif conclusion of the findings.
RECOMMENDATIONS

Chaoter 8 » A detailed illustration of the outcomes inferred from the
apter discussion of results.

CONCLUSIONSAND « propose future research ideas that promised to cover the
FUTURE RESEARCH  aspects related to the overall subject of the report.

« A list of the all cited references used through the entire the

REFERENCES report.

» A — Derivation of bending deflection for individual anchor bolt
« B — Derivation of shear deflection for individual anchor bolt

* C — Derivation of axial deflection for individual anchor bolt

* D — Derivation of shear stresses on anchor bolts

* E — Numerical model verification

* F — Design example

APPENDICES



2 BACKGROUND

In the double-nut moment joint, the load is transferred into the foundation through the
threaded stand-off distance of the anchor bolts. The performance of anchor bolts to resist
the applied forces (i.e., moment, shear, normal and torsion) is primarily dependent on
proper installation. Previous research has investigated the effect of different loading
conditions on the behavior of anchor bolts that have uniform stand-off distances. However,
there currently are no studies in the literature that have investigated the behavior of anchor
bolts with non-uniform stand-off distances. The following sections will address the
previous research that directly related to the present study.

2.1 Construction Problems

The problems that may occur during the installation of anchor bolts can affect the
performance of the structural supports, as well as the strength capacity. One of the
construction problems that could occur at the site is the misalignment of anchor bolts (a.k.a.
plumbing). It is specified in the 2013 Supports Specifications that the vertical misalignment
of anchor bolts should be less than 1:40. This limitation was derived from the research
conducted with NCHRP Report 412 (Kaczinski et al. 1998). It was concluded that the
increase in the bending stress range due to the misalignment of anchor bolts shall be
neglected for vertical inclination up to 1:40.

Loosening nuts is another construction problem that affects the structural integrity of
the base connection. Several studies have investigated the proper tightening procedure of
nuts to prevent them from loosening. Tightening methods were investigated on large
diameter anchor bolts applied in double-nut moment joints (James et al. 1996, Till and
Lefke 1994). Garlich and Koonce (2011) emphasized the severity of loosening nuts and
pointed to how prevalent this problem is within the United States. The axial load during
tightening was measured in new anchor bolts during their installation on an existing pole
(Hoisington et al. 2014). This project was launched as a response of observing several high
mast poles with loosening nuts in Alaska. The measurements revealed that several anchors
reached the yield stress during the tightening procedure.

Studies have shown that pretensioning of anchor bolts improves the performance of the
connection under loading conditions (Garlich and Thorkildsen 2005). The pretensioning is
only applied to the part of anchor between the two nuts. The turn-of-nut method is the
tightening procedure that is used for pretensioning the anchors. The required torque can be
calculated from Equation (2-12-1), which was provided by NCHRP Report 469 (Dexter
and Ricker 2002).

T,=012d, F (2-1)
where:
Tv = verified torque (kip.in)
dp = nominal diameter of the anchor bolt (in)



F = minimum installation pretension force in kips. F is equal to 50% of ASTM
F1554 rod grade 36 and 60% of ASTM F1554 rod grade 55 and 105

The overview of the above construction problems was addressed to clarify the
catastrophic consequences that may occur due to the in-situ conditions and human errors.
If the misalignment of anchor bolts were not considered and investigated, the limitation of
1:40 would not be addressed. The required torque for proper tightening was determined
because the problem of loosening nuts was observed and then investigated. This research
reveals a new construction problem that was observed in the construction site, which
occurred during the installation of the anchor bolts. The construction of the anchor bolts
with non-uniform stand-off distances was evident to be severe in terms of fatigue (Hosch
2013). Therefore, it is important to understand the behavior of anchor bolts with non-
uniform stand-off distances and produce recommendations that help to deal with this
situation if un-avoidable.

2.2 Mechanics of Load Transfer

The loads are transferred to the anchor bolts in terms of direct shear, torsional moment,
and bending moment. The stresses on the anchors corresponding to each load criteria are
distributed according to mechanical relationships associated with the arrangement of the
anchors. NCHRP Report 412 (Kaczinski, Dexter, and Dien 1998) provided Equations (2-
2, 2-3, and 2-4) to calculate the axial stresses due to group bending moment. Equation (2-
2) was also specified by 2013 Support Specifications with adding the term of direct axial
stress. Those equations shall be used to calculate the normal stresses on the anchor bolts
with a uniform stand-off distance, when the anchors are having a stand-off distance lower
than the anchor diameter, as indicated by 2013 Support Specifications. If the anchors
possess a stand-off distance more than the anchor diameter, a beam model should be used
to account for the bending stresses. That model has anchors fixed at the bottom (connection
between anchors and concrete surface) and free to translate but not to rotate at the top
(connection between anchors and the bottom of the leveling nuts).

_Mc

= 2-2
0= (2-2)
I = Z Ay 2-3)
s 0.97437°
Ar =—\|d, — ] 2-4
Ty [ b n (2-4)
where:
o = axial stress due to bending on the individual anchor
M = group moment
I = polar moment of inertia of the anchor group
c = distance between the centroid of the anchor group and the anchor under
investigation in the direction of moment
Ar = netarea of anchor bolt



¢~ = the square distance of the centroid of the anchor group to the anchors in
the direction of mement

dp = diameter of anchor bolt (in)

n = number of threads per inch

Cook and Bobo (2001) proposed design guidelines to calculate the thickness of the base
plate and the required area of steel anchor bolts. The equations were derived based on the
experimental program performed in the project as well the results of the previous works.
Equations (2-5 and 2-6) compute the base plate thickness and the anchor bolt area. In
addition, Cook has presented Equation (2-7) to determine the axial load on the anchor bolt

due to group bending moment
M —
b= (1 = 1) (2-5)
DF, 1,1y,

4y, = M 2-6
se — @ Fu nrb ( )
2M
p=—0 (2-7)
nr
where:
t = design plate thickness
¢ = reduction factor equals 0.9
My = factored moment
rn. = distance between the c.g of the plate to the centerline of anchor group

ro = outside radius of the post

Fy = plate yield stress

Ase = effective area of the bolt that equals 0.75 gross area of the bolt

n = number of anchors

fu = plate ultimate stress

P = unfactored axial force on the anchor due to moment group

M = unfactored moment group

r = distance between the c.g of the anchor group to the bolt under investigation

Equation (2-8) is expressed in the 2013 Support Specifications to calculate the shear
forces due to torsion. The total shear force is the shear force due to torsion plus the shear
force due to direct shear.

F=— (2-8)

where:



o= 4T
|

shear force due to torsion
torsional moment

distance between the c.g. of the anchor group to the outmost anchor
polar moment of inertia of the group of anchors

The shear forces due to torsion can also be expressed in the form of forces in x and y
directions, as shown in Figure 2.1. The figure illustrates the directions of shear forces, as
well as the measuring of the horizontal and vertical dimensions. Equations (2-9 and 2-10)
were specified by McCormac and Csernak (2012) to calculate the horizontal and vertical
shear forces due to torsion, respectively. Those equations are applicable for anchors with a
uniform stand-off distance.

Vi

Figure 2.1 Shear forces due to torsional moment

H_M.v
_Zdz
V_M.h
_Zdz

horizontal shear force due to torsion on each anchor
vertical shear force due to torsion on each anchor

B

Vr

(2-9)

(2-10)

vertical distance between the c.g. of the group of anchors to the anchor under

investigation

horizontal distance between the c.g. of the group of anchors to the anchor

under investigation

Yd? =YV + Yh?

McBride et al. (2014) performed an experimental program to study the reduction in the
shear strength of anchor bolts associated with the change in the uniform stand-off distance.
Three loading conditions were investigated: direct shear, torsion, and torsion. Several
factors were considered including stand-off distance, grouted and un-grouted stand-off
base plate, and base plate mounted in the concrete surface. The author concluded that the
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shear strength of anchor bolts is inversely proportional to the increase of uniform stand-off
distance.

McBride also established a design approach to determine the tension and shear stresses
terms in Equation (2-11), specified by 2013 Support Specifications. Those terms are
expressed in Equations (2-12 to 2-16).

2 2
(ft,l + ft,Z) + (&) <1 (2-11)
F, E,
M roup Ngroup
fir==-222 4 2-12
bt Sgroup n Anet ( )
nr,
Sgroup = g;oup (2-13)
Viorr L
Mport = —bOl; = (2-14)
V. T,
Vporr = b + —22 (2-15)
n N Tyroup
Vb it
fo = AO (2-16)
net
where:
fr1 = tensile stress on the individual anchor due to the group moment
f = tensile stress on the individual anchor due to the bending moment on the
L2 stand-off distance
fv = shear stress
Ft = allowable tension stresses
Fv = allowable shear stresses
n = number of anchor bolts
r = radius of anchor group
Vhot = total shear on anchor
Moot = bending moment due to Vhort
Ln = stand-off distance
Tgroup = torsional moment
Anet = netarea of the bolt

2.3 Standard Comparisons

The 2013 Support Specifications is the only standard found in the literature that
provides design guidance for anchor bolts with uniform stand-off distance. Equations (2-

10



17and 2-18) are used to compute the allowable tension and compression stresses on anchor
bolts. In the case of combined shear and tension or combined shear and compression on
the individual anchor bolt, the conditions in Equations (2-19 and 2-20) shall be satisfied.

F,=05F, (2-17)
F,=05F, (2-18)
CROE
(]C—)Z s (%)2 <1 (2-20)

where:

Ft = allowable tension stress

Fe = allowable compression stress

Fy = vyield stress

fv = applied shear stress on the individual anchor

fy = applied tension stress on the individual anchor

fe = applied compression stress on the individual anchor

It has been observed in AISC Steel Design Guide 1 (Fisher and Kloiber 2006, Appendix
A) that it is recommended to use Equation (2-21) to calculate the compression limit for
anchor bolts in double-nut moment joints.

R.=FE, A, (2-21)
where:

Re = compressive strength of anchor

Fy = yield stress

Ag = gross area of anchor bolt

It should be noted that the 2013 Support Specifications and the AISC Steel Design
Guide 1 specified the compression strength limit-state equation to be valid for anchor bolts
with uniform stand-off distance not greater than four times the anchor bolt diameter. If the
stand-off distance exceeded that limit, buckling of anchors shall be considered.

24 Grout

The presence of grout underneath the base plate is a matter of argument. Some
researches recommended the presence of grout (Cook et al. 2000, Cook and Bobo 2001)
because it protects the base plate as well as the anchors from corrosion. In addition, the
performance of the base connection can be improved by placing the grout pads along with
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the base plate stiffeners. The investigation conducted by McBride et al. (2014) showed a
significant increase in the shear capacity due to the installation of the grout pads.

Other opinions oppose the installation of grout pads in the double-nut moment joints
(Garlich and Thorkildsen 2005, Dexter and Ricker 2002). Non-shrink grout may crack, and
moisture will be trapped inside the gout exposing the anchor bolts to corrode. Also, the
presence of grout will prevent the inspection of the leveling nuts tightening.

The consideration of grout was addressed in two different standards. It was specified
by 2013 Support Specifications that the presence of grout will not be considered in the
calculations of the load capacity of the connection. However, the American Concrete
Institute in 2011 (ACI 318-11) specified that the presence of grout reduces the shear
capacity of anchor bolts by 20%.

In review of the relevant studies on grout placement, the presence of grout will not be
included in this present investigation.

2.5 Previous Research Related to Double-Nut Moment Joints

Limited studies were observed in the literature on anchor bolts with stand-off distances
subjected to different loading conditions. Lin et al. (2011) performed experimental tests to
study the shear behavior on the individual stand-off anchor bolts. The experimental
program included double shear tests on threaded anchor bolts with different uniform stand-
off distances. The anchor bolts were divided into two groups that differ in their end
conditions. The end conditions of the first group were fixed, whereas end rotations were
permitted in the second group. The results showed that the magnitude of the uniform stand-
off distance has a potential effect on the strength of the connection. The shear capacity of
the connection becomes weaker with the increase in the uniform stand-off distance. In
addition, restraining the end rotations recorded lower strength as compared to permitting
rotation at the end conditions.

Lin also conducted a numerical study using the ABAQUS finite element analysis
software to investigate the shear capacity of individual anchor bolts with stand-off
distances. The 3-D quadratic hybrid element was used to model the anchors to ensure a
good level of accuracy. The anchor bolt model was divided into three zones. Two zones
were located at the top and bottom ends of the anchor bolt to represent the area between
the two nuts. A middle zone of the anchor bolt was modeled to represent the stand-off
distance. It was modeled with nonlinear material, while the two ends zones were modeled
with elastic elements to reduce the stress concentration. The author studied three end
conditions: fixed at both ends, limited ends rotations, and the bottom end is fixed and top
end is free to transmit laterally. It was noticed that the rotation of the end conditions had
an effect on the shear capacity of anchor bolts. For free rotation end conditions, the anchor
bolts with shorter stand-off distances recorded the highest increase in shear capacity. Also,
the decrease in the shear capacity for anchor bolts with larger stand-off distance (more than
three times the anchor bolt diameter) was not high. For specimens with fixed end
conditions, the mode of failure of the anchor bolts changed with the increasing stand-off
distances. Shear failure was noticed for anchor bolts with stand-off distance equal to 0.2
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times the diameter of the anchor bolt (da), while bending deformations and strain hardening
modes were found in stand-off distances equal 2 times da and 4 times da, respectively. The
main outcome of the above experimental and numerical investigations was the production
of an equation to calculate the shear capacity of the individual anchor bolt with a stand-off
distance. The determination of shear capacity proceeds according to the proposed terms in
Equation (2-22).

fyacos(B)

Vie = fyaAse,vSin(,B) + 1 N 1 (2-22)
0.94,,, ' 3.45
where:
Vse = shear capacity
fya = yield stress
Ay = effective cross sectional area of anchor bolt
S = =section modulus with the consideration of the presence of threads
S = rotation angle between the deformed position and the anchor vertical axis

Liu (2014) investigated the bending behavior of anchor bolts with excessive uniform
stand-off distances. A numerical study was conducted using RISA-3D 9.1 finite element
analysis software to simulate the individual anchor bolt as well as the anchor group. The
finite element models were conducted to test the beam model identified by 2013 Support
Specifications, which recommended including bending stresses when the uniform stand-
off distance is more than one anchor bolt diameter. The Liu’s beam model consisted of free
anchor bolts to displace laterally with no rotation at the top (anchor bolt/base plate
connection) and fixed at the bottom (anchor bolt/concrete connection). The parameters
included in Liu’s study of the anchor bolt group are the thickness of base plate, stand-off
distance, and number of anchor bolts. It was concluded that the beam model provided by
the 2013 Support Specifications to determine the bending stresses on the individual anchor
bolts is accurate. In case of the anchor group, the author stated that the shear forces
generated from torsion created significant bending stresses even if the stand-off distance is
less than one anchor bolt diameter.

Liu also provided design strength limit-states to account for the effect of bending
stresses due to direct shear and torsion. The author proposed two assumptions to derive the
strength limit-state equations. The first assumption is that every point on the cross-section
of the anchor bolt will reach the yield stress. The second assumption is that the cross-
section of the anchor bolt is divided into two areas to sustain the axial load and moment.
Three limit-state equations were provided by the author. Equation (2-23) describes the axial
load and bending on individual anchor bolts. Equation (2-24) describes the axial load,
shear, and bending on individual anchor bolt. Finally, Equation (2-25) describes the
moment and torsion on an anchor bolt group.

oE, = fe + fo/3 (2-23)
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9oR, = B, + Af,/3 (2-24)

oM, = M, + f,Z;/3 (2-25)
where:
7 = resistance factor
Fy = yield stress
fy = factored axial stress due to dead load
fo = factored bending stress due to wind loading
Rn = combined compression or tension with shear
Pu = factored axial load due to bending and dead load
A = area of the bolt
Mn = moment resistance of the group of anchors
My = group moment
Zy = section modulus of the entire group about the major axis

Scheer et al. (1987) investigated the behavior of anchor bolts under the effect of static
bending stress, and developed a design code equation for anchors that have a stand-off
distance. The original source of this report is not available as it originally made and
published in German language. The findings of this report were cited in Eligehausen et al.
(2006). The moment capacity of the threaded bolt as mentioned by the author is expressed
in Equation 31. The derived equation corresponded to a failure criterion of the anchor bolt
at a rotation angle () of 10°. The shear capacity for anchor bolts with stand-off distances
was also expressed by the author in terms of moment capacity, stand-off distance, and the
criteria of the end condition between the anchor and the base plate. Equations (2-26 and 2-
27) exhibit the calculations of moment and shear capacities for the individual anchor bolt
with a stand-off distance, respectively.

Mys=17W,E, (2-26)
a, M
us = ml = (2-27)

where:
Mus = moment capacity
Vus = shear capacity
Wer = section modulus corresponds to the threaded area
Fy = vyield stress
Om = 1 — for the non-restrained or restrained end rotation with the base plate

2 — for restrained end rotation with the base plate
stand-off distance
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3 ANALYTICAL STUDY

The second moment of inertia of shear walls provides the stiffness required to resist the
lateral loads such as wind and seismic loads. The distribution of lateral loads is based on
the inertia of shear walls, in the direction of the lateral load. Walls with high inertia can
sustain more loads, and therefore they tend to have more reinforcement. This brief
overview might not be directly related to the present investigation, but the concept of load
distribution can help deriving the design equations. In double-nut moment joints, the
anchors are having the same size and spacing, but they may differ in the stand-off distances.
Therefore, the resistance of anchors is not governed by their inertia only, as in shear walls,
instead it is governed by the stiffness, in which stiffness combines all the pre-mentioned
factors. The derivation of stiffness for the individual anchor bolt is addressed in the
following section.

3.1 Stiffness of the Individual Anchor Bolts

The anchor bolts within a double-nut moment joint, are characterized by their short
height. As a result, they have bending, axial, and considerable shear deflections. The
boundary conditions represent one of the major factors that control the deflection. The
boundary conditions of an individual anchor bolt are pre-identified in 2013 Support
Specifications. The anchor bolts are fixed at the bottom (connection between the anchors
and the concrete foundation) and free to translate but not to rotate at the top (connection
between the anchor and the nuts). The following sections include: deriving of bending and
shear deflections, and addressing the axial deflection equation. Those equations will also
be verified for the individual anchors with stand-off distances, using numerical analysis by
SAP2000.

3.1.1 Deflection due to Bending

The deflection due to bending was derived using the integration method. The schematic
illustrated in Figure 3.1 exhibits the deflection shape due to bending. The shown straining
actions were established according to 2013 Support Specifications boundary conditions.

Free to translate Mm=P 1/2 A
not to rotate ™
P— T __ P— TXT__ o o
it
Il ’I
1
/1
]
h h "1
it
|1
—-— Pe— muin — =
Fixed A
M="PL/

Figure 3.1 Deflection of the individual anchor bolt due to moment
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The steps adopted to determine the deflection due to bending are detailed in Appendix
A. The outcome of those steps is Equation (3-1), in which it determines the deflection on
the individual anchor bolt due to bending.

Ph3

— 3-1
A 12E1 3-1)

where:

Ap = deflection of the individual anchor due to bending
P = lateral load

h = stand-off distance

E = modulus of elasticity of the anchor

| = anchor second moment of inertia

3.1.2 Deflection due to Shear

The stand-off distance of an anchor is considered the major factor that determines the
significance of shear deflection. The deflection due to bending is normally considered more
critical than shear deflection. However, for very short anchors, the effect of shear deflection
becomes more critical (Blodgett 1966, Pope 1997). The shear deflection of anchors with
h/d (stand-off distance / anchor diameter) > 10 can be neglected; however, for h/d < 3,
which is the case of very short anchors, the shear deflection can’t be ignored (Richards
2012). The derivation of the shear deflection equation is indicated in Appendix B. The
deflection equation is indicated in Equation (3-2). The shear expressed in this equation is
calculated with assuming that the shear is uniformly distributed over the cross section.
However, the actual shear stress is distributed over the effective shear area, not on the
whole cross sectional area. Therefore, Equation (3-2) is multiplied by a factor (k), which is
called the shear correction factor to compensate the error occurred in the pre-mentioned
assumption. The magnitude of (k) for solid circular cross section is equal to 10/9 (Amany
and Pasini 2009, ANSYS@ Element Reference, Release 12.1).

Ph

=k— 3-2
6 =k (3-2)
where:
Js = deflection of the individual anchor due to shear
P = |ateral load
h = stand-off distance
G = modulus of rigidity of the anchor
A = anchor cross sectional area
k = correction factor = 10/9
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3.1.3 Total Lateral Deflection

The lateral load (P) indicated in sections [3.1.1 and 3.1.2] is the force on the individual
anchor that causes shear and bending deflections. Therefore, the total deflection would be
the summation of shear and bending deflections. Equation (3-3) determines the total
deflection on the individual anchor bolt with a stand-off distance (h) due to lateral loading.
It should be noted that in case of sign and signal structures, the total lateral deflection is
resulted from the lateral forces due to direct shear and torsional moment.

Ph® 10Ph

- 3-3
12E1 * 9GA (3-3)

l =

where:

= total deflection of the individual anchor due to lateral loading
= lateral load

= stand-off distance

modulus of elasticity of the anchor

= modulus of rigidity of the anchor

= anchor second moment of inertia

= anchor cross sectional area

>—@OmI V>
11

3.1.4 Axial Deflection

The anchor bolts with stand-off distances; whether uniform or non-uniform, have axial
loading due to the own weight of the structure and the moment group. The derivation of
the axial deflection is indicated in Appendix C. Equation (3-4) was adopted to determine
the axial deflection of the individual anchors with a stand-off distance.

Ph
=— 3-4

Be= 7 (3-4)
where:
Aa axial deflection of the individual anchor
P = axial load
h = stand-off distance
E = modulus of elasticity of the anchor
A = anchor cross sectional area

3.1.5 Verification of the Derived Bending, Shear, and Axial Deflections

A finite element model was conducted using SAP2000 program to verify the derived
deflection equations The schematic shown in Figure 3.2 demonstrates the beam element
that used in SAP2000, to simulate the individual anchor bolt with a stand-off distance. The
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anchors are having the same boundary conditions specified by 2013 Support Specifications.
The anchors were constructed with a circular cross section of 1.5 in diameter and a stand-
off distance (h) that is varied from 1.2-in to 6-in, with increments of 0.2-in. The ratios of
h/d (anchor stand-off distance / anchor diameter) are ranged between 0.8 and 4. The reason
for not exceeding the ratio more than 4 is that 2013 Support Specifications has specified to
include buckling deformations in the calculations when the anchor length exceeds four
times the anchor diameter.

15" Free to translate
Fixed & not to rotate

=

h
Figure 3.2 Layout of the anchor modeled in SAP2000

A number of 25 anchors were constructed on SAP2000. Two cases were studied: the
first case was to apply a lateral force of 1-kip at the end that is free to transmit with no
rotation, to determine the bending and shear deflections. The second one was to apply an
axial force of 1-kip at the same preceding position, to determine the axial deflection. The
same model was used for both cases. Figures (3.3 and 3.4) show a snhap shoot from
SAP2000 that demonstrates the lateral and axial loading on anchors, respectively.
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Figure 3.3 Application of lateral loads on the anchors
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Figure 3.4 Application of axial loads on the anchors

Results and Analysis

The results exhibit in Table 3.1 represents a comparison between the numerical and
analytical deflections for lateral and axial loading. It can be noticed that the results are
almost identical, in which the max percentage of differences was found to be equal to
0.273% for vertical and 0.068% for axial. This means that the derived deflection equations
are accurate for individual anchors with stand-off distances.

Table 3.1 Comparison between numerical and analytical deflections

Vertical Axial
h-in  h/d . Analytical % of . Analytical % of
ANumeical, 1N At,yitn difference | ANumerical, IN Aa,y;n difference

1.2 0.8 8.74E-05 8.73E-05 0.059 2.34E-05  2.34E-05 0.025
1.4 093 1.10E-04 1.10E-04 0.068 2.73E-05  2.73E-05 0.031
1.6 107 1.37E-04 1.37E-04 0.010 3.12E-05  3.12E-05 0.036
1.8 1.2 1.69E-04 1.68E-04 0.007 3.51E-05 3.51E-05 0.011

2 133 2.05E-04 2.05E-04 0.007 3.90E-05  3.90E-05 0.017
2.2 147 2.47E-04 2.47E-04 0.027 4.29E-05  4.29E-05 0.021
24 16 2.95E-04 2.95E-04 0.004 4.68E-05  4.68E-05 0.025
26 173 3.49E-04  3.49E-04 0.000 5.07E-05  5.07E-05 0.028
28 187 4.11E-04 4.11E-04 0.007 5.46E-05  5.46E-05 0.031
3 2 4.81E-04  4.81E-04 0.006 5.85E-05  5.85E-05 0.017
3.2 213 5.59E-04 5.59E-04 0.010 6.24E-05  6.24E-05 0.020
34 227 6.45E-04 6.45E-04 0.010 6.63E-05  6.63E-05 0.023
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Vertical Axial

h-in h/d Awo o in Analytical - %of | . Analytical % of
Numerical, Ay, in difference Numerical, Aa, in difference

36 24 7.42E-04 7.42E-04 0.014 7.02E-05  7.02E-05 0.025

3.8 253 8.48E-04 8.48E-04 0.016 7.41E-05  7.42E-05 0.027
4 267 9.65E-04 9.65E-04 0.012 7.80E-05  7.81E-05 0.017
42 28 1.09E-03 1.09E-03 0.228 8.19E-05  8.20E-05 0.019
44 293 1.23E-03 1.23E-03 0.165 8.58E-05  8.59E-05 0.021
46 3.07 1.38E-03 1.38E-03 0.273 8.97E-05  8.98E-05 0.023
48 3.2 1.55E-03 1.55E-03 0.111 9.36E-05  9.37E-05 0.025
5 333 1.73E-03 1.73E-03 0.225 9.75E-05  9.76E-05 0.027
5.2 347 1.92E-03 1.92E-03 0.113 1.01E-04 1.01E-04 0.068
54 36 2.12E-03 2.12E-03 0.187 1.05E-04  1.05E-04 0.068
56 3.73 2.34E-03 2.35E-03 0.217 1.09E-04  1.09E-04 0.068
5.8 3.87 2.58E-03 2.58E-03 0.068 1.13E-04 1.13E-04 0.020
6 4 2.83E-03 2.83E-03 0.160 1.17E-04  1.17E-04 0.018

The section herein was adopted to comprehend the significance of shear deflection to
the bending deflection. The analytical analysis indicated in Table 3.1 was extended to
include anchors with stand-off distances lower than 1.2 in and more than 6 in. The h/d
ratios that used in this analysis was ranged between 0.13 and 10. Figure 3.5 shows a
comparison between bending deflections and shear deflections, with respect to the increase
in the stand-off distance (h). As shown in the figure, the rate of the increase in bending
deflection with respect to the stand-off distance is much higher compared to the rate of
increase in shear deflection. The relationship provided in Figure 3.6 illustrates the
degradation in the significance of the shear deflection with respect to the ratio of the change
in stand-off distance with the diameter of 1.5-in. It can be noticed that the percentage of
shear deflection to total lateral deflection is very high for very short anchors. However, this
percentage is rapidly decrease with the increase of h/d ratio. At h/d equal to 10, the
percentage of ds/A, is equal to 2.1%, which indicates that shear deflection can be ignored.
However, the percentage corresponded to the ratio of h/d < 3 is ranged between 35.1% and
99.2%, which emphasis the significance of shear deflection at low h/d levels. The results
expressed in this section are complied with the limitations specified by (Richards 2012)
that mentioned in section [3.1.2].
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Figure 3.5 Comparison between bending and shear deflections
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Figure 3.6 Relation between h/d and the percentage of shear deflection

3.1.6 Evaluation of Stiffness Equations

The lateral stiffness of the anchor bolts with stand-off distances is the stiffness adopted
to resist the lateral loading that induces bending and shear deflections, in the direction
perpendicular to the longitudinal axis of the anchor. The lateral stiffness equation is

developed using the following procedure.

Ph® 10Ph
P = Kl Al = Kl

12E1 * 9GA
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h®  10R\
- — 3-6
Ki (12151 * 9GA> (3-9)

where:

, = stiffness of anchors with stand-off distances due to lateral loading
= lateral load

= stand-off distance

modulus of elasticity of the anchor

= modulus of rigidity of the anchor

= anchor second moment of inertia

= anchor cross sectional area

>—Om=- TV X
1

The axial stiffness of the anchor bolts with stand-off distances is the stiffness adopted
to resist the axial loading that induces axial deflection, in the direction of the longitudinal
axis of the anchor. The axial stiffness equation is developed using the following procedure.

Ph
P=@Afﬂg&ﬂ 3-7)
EA
Ka = T (3-8)

where:
Ka = stiffness of anchors with stand-off distances due to axial loading
P = axial load
h = stand-off distance
E = modulus of elasticity of the anchor
A = anchor cross sectional area

3.2 Center of Rigidity (C.R.)

The anchor bolts and the base plate are connected using nuts and washers, therefore
they behave as a rigid body. When a force is applied on the centroid of anchors, the anchor
group will react as a rigid body to resist this force. The center of rigidity (C.R.) for anchor
group can be defined as the center of the stiffness or resistance within the group. The anchor
bolts have a C.R. that might or might not coincide with their centroid. When the lateral
loads are applied on the center of rigidity of anchors, the anchor group will tend to translate
with no rotation. In case of that the C.R. is not coinciding with the centroid of anchors, the
lateral loads applied on the centroid will tend to translate and rotate the anchor group.

In double-nut moment joints, the anchors with uniform stand-off distances are having
the same area, spacing, and stand-off distances. Therefore, the location of the center of
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rigidity shall be at the same location of the center of gravity. The anchors with non-uniform
stand-off distances are having the same area and spacing, but they differ in the stand-off
distance. That difference will create a change in the stiffness of anchors, in a way that the
anchors with high stand-off distances tend to have lower stiffness and vice versa. This can
be explained by the fact that the lateral stiffness of anchors is inversely proportional to the
stand-off distance. As a result, the center of rigidity will shift towards the anchors that have
the lower stand-off distances.

Figure 3.7 indicates the layout of anchor bolts with their distances towards the center
of rigidity. The number of anchors indicated in the figure was randomly selected to
represent the anchor group. The determination of the center of rigidity for anchor bolts with
stand-off distances was developed using the following procedure.
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Figure 3.7 Determination of center of rigidity

By taking the summation of moment rigidity about y-axis:

n

XZKi:lel‘l‘ K2x2+K3X3+K4x4+ """ +Knxn (3'9)
i=1
n n

b z z (3-10)
i=1 i=1

_ " K x;

¥ = i=1" (3_11)

?:1 K;
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The equation resulted from taking the summation of moment rigidity about x-axis is as
follows:

?:1 Ky

n
i=1 Ki

Y = (3-12)

The group of anchors within the double-nut moment joints expose to two types of
deformations: lateral and axial. The stiffness due to lateral and axial loading can be
determined using the pre-mentioned equations (3-6 and 3-8), respectively. The impact of
that is the formation of two center of rigidities: lateral center of rigidity and axial center of
rigidity. Equations (3-13 and 3-14) represent the lateral center of rigidity, whereas
Equations (3-15 and Error! Reference source not found.) represent the axial center of
rigidity. The employment of those centers is distinct from each other, in which the function
of the lateral center of rigidity is to obtain the shear forces due to direct shear loading and
torsion, whereas the axial center of rigidity will be utilized for obtaining the axial forces
on anchors due to moment group and the structure own weight. The determination of those
forces is presented in the following sections.

_ noR
X, = % (3-13)
i=1 Ki;
_ n Ky v
i=1 8™ Ji
= = 3-14
_ * LKy x;
i=1"%ai i
=== 4t 3-15
“ Z?:l Kai ( )
n
_ YKy
¥, = Sl (3-16)
i=1 Kai
where:
X = x-coordinate of the center of rigidity due to lateral loading
Xa = x-coordinate of the center of rigidity due to axial loading
Y, = y-coordinate of the center of rigidity due to lateral loading
Ya = y-coordinate of the center of rigidity due to axial loading
Kii = stiffness of anchor i due to lateral loading
Kai = stiffness of anchor i due to axial loading
Xi = x-coordinate of anchor i
Yi = y-coordinate of anchor i
n = number of anchor bolts
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3.3 Shear Forces on the Anchor Bolts due to Direct Shear Loading

As mentioned previously, the stiffness of an anchor is inversely proportional to the
stand-off distance. When the anchors have a uniform distribution of stand-off distances,
each of them would have the same stiffness. Therefore, the C.R. will coincide with the
center of gravity. The consequence is that the shear forces will be distributed equally on
the anchor bolts. That case doesn’t comply with the case of anchors with non-uniform
stand-off distances, in which each anchor has a different stand-off distance. The result is
the mismatch of the center of rigidity with the center of gravity. That will lead to the
unequal distribution of shear forces on the anchor bolts. The reason for that is the un-
uniformity of the anchor bolts stiffness, in which the anchors with high stiffness among the
group would carry more loads. Therefore, the shear forces would be transmitted to the
anchors according to the lateral stiffness of the individual anchor bolt. The following
procedure was performed to develop the shear forces on anchors with non-uniform stand-
off distances.

For anchors with a uniform stand-off distance, Figure 3.8

Figure 3.8 Anchors with a uniform stand-off distance
Alternative 1:

The characteristics of anchors with a uniform stand-off distance are: they have the same
area, spacing, and stand-off distance. Therefore, the shear force will be uniformly
distributed on the anchor bolts. The following equation shall be used to determine the shear
force on the individual anchor bolt within the group.

Ff=F,=F;=-=F, =— (3-17)

Alternative 2:
Since the anchors have the same characteristics, they would have the same stiffness.
Anchor lateral stif fness: K;; = Kj; = Kiz3 = Kjy =+ = K, (3-18)

Distribution Factor Cy;: is the factor that determines the shear force share for each
individual anchor bolt within the group
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Ci; = anchor i stif fness/summation of anchors stif fness

€y = (3-19)
LTyYn Ky,

By substituting Equation (3-18) in Equation (3-19):

K 1
1i_nKl_n

where: n is the number of anchor bolts (3-20)

Shear on individual anchor (Fy;) = C; V (3-21)

By substituting Equation (3-20) in Equation (3-21):
Fi=— (3-22)

It can be noticed from the above derivations that they led to the same equation.
Therefore, alternative 2 will be adopted to derive the general equations that can be used to
determine the shear forces on the anchors with non-uniform stand-off distances due to
direct shear loading. Alternative 1 will not be used because one of its characteristics is not
complied with the case of anchors with non-uniform stand-off distances. That characteristic
is the inequality of the stand-off distances in the case of anchors having non-uniform stand-
off distances.

For anchors with non-uniform stand-off distances, Figure 3.9

Figure 3.9 Anchors with non-uniform stand-off distances
By recalling Equation (3-19), illustrated above in Alternative 2:

Ki;

Cyi =
YUY Ky

(3-19)

The above equation will not transformed to any form because the anchors stiffness are
not equal.

By recalling Equation (3-21), illustrated above in Alternative 2:
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Fiy=C,;V (3-21)

By substituting equation (3-19) in Equation (3-21), the shear forces on the anchors with
non-uniform stand-off distances can be calculated from the following equation.

Kj;
n

F=V (3-23)

From the previous derivations and discussions, the general equations that adopted to
calculate the shear forces due to direct shear loading on the anchors with uniform and non-
uniform stand-off distances are presented below.

Fixi =V, (3-24)
1xi X ?_1 Kli
_ K;;
Fiyi = Vy s (3-25)
=1
where:
Fui = shear force on anchor i in x-direction due to direct shear loading
Fii = shear force on anchor i in y-direction due to direct shear loading
Vx = direct shear loading in x-direction
Vy = direct shear loading in y-direction
Kii = stiffness of anchor i due to lateral loading

3.4 Induced Torsional Moment on the Anchor Bolts due to Direct Shear Loading

The center of rigidity is shifted from the anchors’ centroid due to the non-uniformity
of the stand-off distances within the anchor group. Whether the anchors stand-off distances
are uniform, or non-uniform, the induced wind loads will be applied on the center of the
base plate, i.e. centroid of anchors. Among those loads are the direct shear loading in x and
y directions. Figure 3.10 exhibits the direct shear loading in the directions of x and vy,
applied on the centroid of anchors with non-uniform stand-off distances. The figure also
indicates that the anchors are having an additional torsional moment, due to the translation
of the center of rigidity from the location of the center of gravity. That additional torsion
would not be created in case of anchors with uniform stand-off distances.

27



i
S

|
|
TI
@i .
® ‘ ®
|

Figure 3.10 Torsional moment due to direct shear loading

The following procedure was adopted to derive the equation that calculates the induced
torsion due to direct shear loading.

By taking the moment about the center of rigidity:

=0 (3-26)

=l

> Moch =T' £V, X £V,

The equation below can be used to calculate the additional torsion due to direct shear
loading.

T' =4V, X, 2V, Y, (3-27)
where:
T = shear force on anchor i in x-direction due to direct shear loading
Vy = direct shear loading in x-direction
Vy = direct shear loading in y-direction
X = x-coordinate of the center of rigidity due to lateral loading
Y, = y-coordinate of the center of rigidity due to lateral loading

3.5 Shear Forces due to Pure Torsion and the Induced Torsion from Direct Shear
Loading

The torsional moment is conveyed to the anchor bolts in following manner. The wind
loads applied on the cantilever arm, induces a torsional moment on the base plate. That
torsional moment will then be transferred to the anchor bolts with shear forces. The fixation
of anchors with the base plate through nuts and washers, makes the joint performs as arigid
body. The uniformity of the stand-off distances determine the magnitude of the shear forces
that each anchor should carry. The anchors with a uniform stand-off distance are having
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even distribution of shear forces. However, the shear forces are not equally distrusted for
anchors with non-uniform stand-off distances.

The concept of the equations presented in this section is came from the equations that
used to distribute the lateral loads in the design of buildings under wind and seismic loads.
In case of buildings, the loads are distributed with respect to the inertia of shear walls.
However, in case of sign structures, the inertia of anchors is equal because they have the
same size, therefore the stiffness is the governed factor that determines the magnitude of
the shear force on each anchor due to torsion. The following procedure was developed to
determine the equations that can be used to calculate the shear forces due to torsion.

For anchors with a uniform stand-off distance, Figure 3.11

Figure 3.11 Distribution of shear forces due to torsion for anchors with a uniform
stand-off distance

R -
Kndy Kpd, Kpsds K dy

(3-28)

In steel design, particularly in the design of connections under eccentric loads, the
above equation is used to develop the equation that calculates the shear forces on bolts due
to torsion, but without the stiffness term (McCormac and Csernak 2012). In the procedure
herein, the stiffness term is included to account for the difference in the stand-off distances,
if occurred. However, if the stand-off distances are the same, the stiffness terms will cancel
each other and the end result of the equation will be the same. The addition of stiffness was
come from the assumption that the anchors are in the elastic zone, and there is a directly
proportional relationship between the anchor deformation and the distance between the c.g.
of the base plate and the anchor. The stiffness term in the above equation is came from that
concept, in which the anchor deformation is the product of the lateral force divided by the
stiffness. Therefore, the inclusion of stiffness in the equation is more generic to account for
all the aspects that may change the behavior of the connection. The above equation is
transformed into the form below.
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F F F. E
1_z_3_.=-" (3-29)
L4 4 2,
H_ L _p 0% A B, 0% g 3-30
oo T g T BTy Ry (3-30)

The torsional moment in the equation below is resulted from the pure torsion due to
wind loads and the induced torsion from the direct shear loading. The summation is
algebraic depends on the direction of the induced torsion.

n
T=2Fidi=F1d1+F2d2+F3d3+---+Fndn (3-31)

=1

By substituting Equation (3-30) in Equation (3-31):

dl Fl d2 Fl d3 Fl dn
T=F d -t 3-32
1d1d1+ 4 d, + 4 ds + -+ 4 dy (3-32)
F Fi
T =—2[d? +dZ +dZ + -+ d2] =—1de (3-33)
dy d;
i=1
d? = x? + y? (3-34)

Since the distance between the centroid of anchors to the anchors is the same, the shear
forces will be distributed equally. By substituting Equation (3-34) in Equation (3-33):

~ Td
PN CHE R

Fri (3-35)

The above derivations are led to the following equation, which comply with the
equation specified by 2013 Support Specifications to calculate the shear forces due to
torsion for anchors with a uniform stand-off distance.

Td
Fp=— (3-36)
J
where
Fr = shear force due to torsion
T = torsional moment
d = distance between the c.g. of the anchor group to the outmost anchor
J = polar moment of inertia of the anchor group
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For anchors with non-uniform stand-off distances, Figure 3.12

Figure 3.12 Distribution of shear forces due to torsion for anchors with non-uniform
stand-off distances

By recalling Equation (3-28):

T T
Kndy Kpd, Kpds K dy

(3-28)

The stiffness for the above equation will not cancel each other as in the case of anchors
with a uniform stand-off distance. The reason for that is the irregularity of the stand-off
distances that led to the change in anchors stiffness.

F F. K, F; d F. F, K, F;d
L =2 =212 L il (3-37)
Kll dl KlZ dZ Kll dl Kll dl Kln dn Kll dl
By recalling Equation (3-31):
n
T=ZFl-di=F1d1+F2d2+F3d3+---+Fndn (3-31)
i=1
By substituting Equation (3-37) in Equation (3-31):
Kll dl Klz F1 dZ Kln Fl dn
T=Fd + dy+-+——d (3-38)
"'Kndy Kndy C Kpdy "
n
T = A [Ki1 df + Ky, d3 + -+ K, d2] = i ZK-d? (3-39)
Kll dl 11 1 12 2 n %n Kll dl - li 1
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Kll dl KlZ dZ

F, = m , F,= m ......... (3-40)
By recalling Equation (3-34):

d? = x? + y? (3-34)
By substituting Equation (3-34) in Equation (3-40):

F =T K d; (3-41)

moKy (xF+yP)

From the previous derivations and discussions, the general equations that adopted to
calculate the shear forces due to torsion on the anchors with uniform and non-uniform
stand-off distances are presented below.

Fpog = T iYL (3-42)
i=1 Ku (xf +y7)
Fppi = T o % (3-43)
e Ky (6 +y7
where:
Faxi = shear force on anchor i in x-direction due to torsion
Foyi = shear force on anchor i in y-direction due to torsion
T = torsional moment pure torsion and direct shear loading
Kii = stiffness of anchor i due to lateral loading
Xi = distance between anchor i and the c.r. due to bending and shear in x-
direction
yi = distance between anchor i and the c.r. due to bending and shear in y-
direction

3.6 Group Moment Induced from the Shear forces on Anchors due to Direct Shear
Loading and Torsion

In order to understand how the direct shear loading will result in a group bending
moment on the anchor bolts, an example of a single story building will be used for
clarification. Figure 3.13 shows the layout of a steel structure that comprised of one story.
As shown in the figure, the building is consisted of a steel deck rested on four steel
columns. A load F is applied horizontally at the mid height of the story building. It can be
noticed that the load is equally distributed on the steel columns, with no additional bending
moment because the load is applied at the c.g of columns. If the load is shifted upwards to
be applied at the centerline of the steel deck, as illustrated in Figure 3.14, the load will
create an additional group moment. This moment is equal to the shear load F multiplied by
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the distance between the centerline of the steel deck to the mid height of columns. It should
be noticed that all columns are having the same height, so the group moment will be equally
distributed on the top of columns.

Mo =tp

Figure 3.14 Single story steel building with a load on the steel deck

The case described in Figure 3.14 is similar to the case of anchor bolts with a uniform
stand-off distance. The load is applied on the centerline of the base plate that is connected
to the anchor bolts with the uniform stand-off distance. For sign and signal structure, the

following equation can be used to determine the moment group of anchors with a uniform
stand-off distance.

(Maroup) ,,, = Vy 1/2 (3-44)
(MGroup)ly =V, h/2 (3-45)
where:
(Marowp)1x = group moment about x-axis due to direct shear loading in y-direction
(Marowp)yy = group moment about y-axis due to direct shear loading in x-direction
Vyx = direct shear loading in x-direction
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Vy
h

direct shear loading in y-direction
stand-off distance

It should be noted that the shear forces applied on the anchor group are due to direct
shear loading and torsion. In case of anchors with a uniform stand-off distance, the anchors
are having the same stand-off distance, therefore the summation of moments on the anchors
within the group due to torsion would be zero. The shear forces due to direct shear loading
would be the forces that produce the group moment. That is the reason that the above
equations are having the direct shear loading only.

The procedure indicated below is another generic alternative, to determine the moment
group of anchors with a uniform stand-off distance. Figure 3.15 (a and b) shows the
summation of shear forces due to direct shear loading and torsion, respectively. Those
forces were indicated in sections [3.3 and 3.5]. To determine the bending moments on the
individual anchors within the group, the beam model specified by 2013 Support
Specifications will be used for calculations. That model considers the connection between
the anchors and concrete foundation to be fixed, and the anchors/leveling-nuts connection
to be free to transmit without rotation. It was also specified that the beam model should be
used when the anchors uniform stand-off distance is more than the anchor diameter. That
condition will not be considered in the present study for accuracy. With the conditions of:
torsion induces a summation of forces in x and y directions equal to zero (Figure 3.15-b),
and the stand-off distances are equal; the summation of the induced moment on the anchor
group due to torsion would be zero. That context was mentioned in the preceding
paragraph, but it is recalled herein because this discussing alternative approach will be used
for anchors with non-uniform stand-off distances, and the moment due to torsion at that
case will be considered. The subsequent procedure will exclude the torsion from
calculations.

F
1yq
F, le4 3 1
1 —_— ys
Finy \ysf Q4 5 ” F F2y3 Fz““ F2y5
y, P : ol Fra 7 0 FausS
1y2 ™ ks - 1 2y4
Fipp 7 ny P - 3 5 F
—~ga— —Vr - t il ‘8 Fie Wy, - T él 2y6
» gl 2 o 7‘F1y7 F 6 F2x6
lelN 4 Vy ! T8 —F 2 2y~2
\ g F
F7\ 89 Fl s Jle \Zzys 7 Fzﬂ
iy1 F 71 s T
1ys 2y1 2x8
(a) (b)

Figure 3.15 Shear forces due to direct shear loading and torsion for anchors with a
uniform stand-off distances

The schematic shown in Figure 3.16 indicates the moments on the individual anchor
bolts, at the anchors/concrete-foundation connection, induced from the shear forces due to
direct shear loading, about x and y axes. The algebraic summation of those moments will
result in the moment group about each direction. This procedure was conducted to obtain
the moment group on anchors with a uniform stand-off distance, and compare the moment
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equations with those indicated in Equations (3-44 and 3-45). If complied, that alternative
procedure will be used to determine the group moment for anchors with non-uniform stand-
off distances.

Figure 3.16 Moment group on anchors with a uniform stand-off distance

Consider that the anchors in the above figure have a uniform stand-off distance of h-
in. The determination of the moment group will be performed about x-axis only, and the
terms of the end result equation will be converted to comply with the moment group about
y-axis.

x1 = )/2 yMyz = 3; My = yzn (3-46)
n
h
z M,; = Z Flyl = ? (3-47)
i=1 i=1
Equation (3-47) will be transformed into the following:
n
h
Z Mxl - (MGroup)lx 7 (3'48)
i=1
For moment group about y-axis:
n
h
Z Myi = (MGroup)ly =V ? (3-49)

[uny

L

Equations (3-48 and 3-49) are complied with Equations (3-44 and 3-45). It can be
inferred from these results that the alternative procedure used to determine the moment
group for anchors with a uniform stand-off distance is correct. That procedure will be used
to determine the moment group due to shear forces for anchors with non-uniform stand-off
distances. The figure below shows the moment group for anchors with non-uniform stand-
off distances.
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Figure 3.17 Moment group on anchors with non-uniform stand-off distances

Since the anchors are having unequal stand-off distances, the shear forces due to torsion
will be considered in the calculations. The next procedure was adopted to develop the
equations that calculate the moment group about x and y axes, for anchors with non-
uniform stand-off distances.

— (Flyl i FZyl) hl M — (Flyz i FZyZ) h2 M — (Flyn i FZyn) hn (3_50)

Mxl 2 ) X2 2 xn 2
M,; = Ez(ﬂyi t Fppi) hy = z Fryi 71 (3-51)
i=1 i=1 i=1

The moment group equations due to shear forces:

(Mgroup) —Zn:F o (3-52)
Group ), — ' lyi 2
i=1
n
h;
(MGroup)ly = Z Fiyi 7 (3'53)
i=1
where:
(Marowp)1x = group moment about x-axis due to direct shear loading in y-direction
(Marowp)yy = group moment about y-axis due to direct shear loading in x-direction
Fixi = total lateral force on anchor i in x-direction due to direct shear loading
and torsion
Fiyi = total lateral force on anchor i in y-direction due to direct shear loading
and torsion
hi = stand-off distance of anchor i
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3.7 Axial forces on Anchor bolts due to the Total Own Weight of the Structure

The total own weight of the structure is applied on the centroid of anchor bolts. For
anchors with a uniform stand-off distance, the axial forces induced from the own weight
will be distributed equally on the anchor bolts. The reason for that is the compliance of the
center of gravity with the center of rigidity. The following equation can be used to calculate
the shear forces on the anchors having a uniform stand-off distance:

N,
Ny = 2% (3-54)
n
where:
Nii = axial force on anchor i due to the total own weigh of the structure
Now = total own weight of the structure
n = number of anchors

In case of anchors with non-uniform stand-off distances, the total own weight of the
structure will induce axial forces, as well as group moments. The procedure of the
determination of axial forces is the same as that adopted to determine the shear forces on
the anchor bolts due to direct shear loading, section [3.3]. The forces were distributed
according to the lateral stiffness of anchors, see equations (3-24 and 3-25). Those equations
were recalled below for demonstration.

Ki;

Fioi = Voo 3-24
1xi X ?=1Kli ( )
_ K;;
Fryi =V (3-25)
i=1 00

The distribution of axial forces was performed to comply with the equations above with
a difference that the adopted stiffness would be the axial stiffness. The equations illustrated
below can be used to calculate the axial forces due to the total own weight, on the anchors
with uniform and non-uniform stand-off distance.

Kai
Nli = No.w nopo (3-55)
i=1"at
where:
Nii = axial force on anchor i due to the total own weigh of the structure
Now = total own weight of the structure
Kai = axial stiffness of anchor i

The determination of the group moment due to the total own weight will be performed
in the next section.
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3.8 Moment Group on the Anchor Bolts due to the Total Own Weight of the
Structure

This section is applicable only for anchors with non-uniform stand-off distances. Since
the total own weight is applied on the c.g. of anchor group, and the C.R. is shifted from the
c.g.; moment groups will be generated about x and y axes. The following procedure was
adopted to determine the moment groups on the anchors having non-uniform stand-off
distances.

Figure 3.18 Moment group due to the own weight of the structure

By taking the moment about the center of rigidity:

Z Myacr = (1\/IGr'oup)x1 t Now 7a =0 (3'56)

z My@C.R. = (MGroup)yl + Now Xa =0 (3-57)

The equation below can be used to calculate the moment groups about x and y axes due
to the own weight, with the addition of the weight of arms and attachments, if applicable.

(MGroup)Zx =x No.w ’ 7 t (MArms+attachments)x (3'58)
(MGroup)zy =x Now - X+ (MArms+attachments)y (3-59)
where:
(Maroup)2x = group moment about x-axis due to the total own weight of the
structure
(Maroup)2y = group moment about y-axis due to the total own weight of the
structure
(MArms+Attachments)x group moment about x-axis due to arms and attachments, if
applicable
(MArms+Attachments)y group moment about y-axis due to arms and attachments, if
applicable
No.w = total own weight of the structure
X = x-coordinate of the center of rigidity due to axial loading
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Y, = y-coordinate of the center of rigidity due to axial loading

3.9 Axial Forces on the Anchor Bolts due to Group Bending Moment

This section is dedicated to determine the axial forces due to group moment induced
from wind loading, for anchors with uniform and non-uniform stand-off distances. The
concept of deriving the shear forces due to torsion, in section [3.5], is used to determine
the axial forces due to group moment. The concept is based on assumption that the anchor
deformation is directly proportional to the distance between the c.g. of the anchor group
and the anchors, with the consideration of that the anchors and the base plate are a rigid
system. The derivation procedure is as follows:

For anchors with a uniform stand-off distance, Figure 3.19:

(4) g
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Figure 3.19 Axial forces due to group moments for anchors with a uniform stand-off
distance

The following procedure is performed for the moment group due to wind loading about
X-axis:

Nl — N2 — N3 — . — Nn (3-60)
Kal V1 Kaz Y2 Ka3 Y3 Kan Yn

All the anchors are having the same stiffness because they have equal stand-off
distances. The above equation will be transformed to:

Nl N2 N3 Nn

— 2 = (3-61)
Yi Y2 Y3 Yn
N N. N N. N. N. N.
—1=—2=>N2= 12 ’ —1=—3=>N3= 1}’3‘“Nn= 1Yn (3-62)
Y Y2 Y1 Yi V3 V1 V1

n
szzNi.Vi=N1y1+N2y2+N3y3+"'+Nnyn (3-63)

i=1
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By substituting Equation (3-62) in Equation (3-63):

N N N
M, —N1y1y1+ 12 Vv, + 13 Yo 4 oot 1Vn Y (3-64)
1 1 1 V1
N N, %
1 1
Me=tlp2 +y2+y2 4ot yF =) g2 (3-65)
V1 V1 o
Mx Y1
N, = 3-66
1 Z:;lylz ( )

The following general equations can be used to determine the axial forces due to the
total moment group due to: direct shear forces (section 3.6), total own weight (section 3.8),
and wind loading.

Vi
(MGroup)tx Zl . yl (3-67)
= (Meroup) 3-68
roup ty Zl L l ( )
where:
N2i = total axial force on anchor i due to group bending moments about x-axis
Nsi = total axial force on anchor i due to group bending moments about y-axis
(Mgrowp)x = total group moment about x-axis due to wind loading in y-direction, direct
shear forces, and total own weight
(Mcrowp)ty = total group moment about y-axis due to wind loading in x-direction, direct
shear forces, and total own weight
Xi = distance between anchor i and the c.g. of anchor group in x-direction
Yi = distance between anchor i and the c.g. of anchor group in y-direction

For anchors with non-uniform stand-off distances, Figure 3.20

(N2)4 (N)
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) s
2

Figure 3.20 Axial forces due to group moments for anchors with non-uniform stand-
off distances
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The following procedure is performed for the moment group due to wind loading about
x-axis. By recalling Equation (3-60):

N N N N (3-60)
Kal V1 Kaz Y2 Ka3 Y3 Kan Yn

Since the anchors are having non-uniform stand-off distances, the stiffness will not be
the same. Figure 3.21 demonstrates the distances xi and y; that measured from the anchor
to the c.r. in x and y directions, respectively.
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Figure 3.21 Measurements of xi and yi

N. N. K, N Kgn N.
1 2 L = az V1 Y2 N, = o 1Yn (3-69)
Kaiy1r Ka2 ¥ Ka1 ¥1 Ka1 y1
By recalling Equation (3-63):
n
Mx:ZNiJ’i:N1)’1+N23’2+N3)’3+“‘+Nn3’n (3-63)
i=1
By substituting Equation (3-69) in Equation (3-63):
Ka1 ¥1 | Koo N1 Y2 Kan N1 Yn
M, =N,y + Yo+t ———— (3-70)
* L Ka1 y1 Ka1 y1 2 Kaiyy 7"

Ny 2 2 2 2 Ny o 2
M, = [Kal yi+ Ko ys + Koz ys + -+ Ko yn] = ZKaiyi (3'71)
Ka1 Y1 Ka1 Y1 =
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M, Ka1 Y1
N, =—— (3-72)
! i=1 Kai )’iz

The following general equations can be used to determine the axial forces due to the
total moment group due to: direct shear forces (section 3.6), total own weight (section 3.8),
and wind loading. Those equations can be used to determine the axial forces for anchors
with uniform and non-uniform stand-off distances.

Kai yi
N, = (M _— 3-73
21 ( Group)tx Z?zl Kai yiz ( )
Ko; X
Ny = (M _— (3-74)
3i ( Group)ty Z{l=1 Kai xiz
where:
N2i = total axial force on anchor i due to group bending moments about x-axis
Nsi = total axial force on anchor i due to group bending moments about y-axis
(Mcrowp)x = total group moment about x-axis due to wind loading in y-direction, direct
shear forces, and total own weight
(Mcrowp)ty = total group moment about y-axis due to wind loading in x-direction, direct
shear forces, and total own weight
Ka = stiffness of anchor i due to axial loading
Xi = distance between anchor i and the c.g. of anchor group in x-direction
Yi = distance between anchor i and the c.g. of anchor group in y-direction

3.10 Combined Loading on the Anchor Bolts

The calculations of stresses on the anchors with uniform and uniform stand-off
distances are summarized in the following steps:

1. Determination of shear forces due to: pure torsion, direct shear loading, and induced
torsion from direct shear loading.

Fixi = £ Fixi® Foy (3-79)
Ftyi =t Flyii FZyi (3-76)
where:
Fii = total shear forces on anchor i in x-direction
Fyi = total shear forces on anchor i in y-direction
Fui = shear force on anchor i in x-direction due to direct shear loading, section [3.3]
Fii = shear force on anchor i in y-direction due to direct shear loading, section [3.3]
Foxi = shear force on anchor i in x-direction due to torsion, section [3.5]
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Fayi = shear force on anchor i in y-direction due to torsion, section [3.5]

2. Determination of axial forces resulted from total own weight of the structure, and
the moment group induced from: direct shear forces, total own weight of the
structure, and wind loads.

Ny = £ Ny £ Ny £ N3 (3-77)
where:
N,; = total axial force on anchor i
Nii = axial force on anchor i due to the total own weigh of the structure
N2i = total axial force on anchor i due to group bending moments about x-axis (total
own weight, wind loading, and direct shear forces in y-direction)
Nsi = total axial force on anchor i due to group bending moments about y-axis (total

own weight, wind loading, and direct shear forces in x-direction)

3. Determination of axial stresses due to the loads developed in steps 1 and 2.

Nti Mxi-r_l_Myl--r

=ty 3-78
N (3-78)
F.;i*h
My =~ (3-79)
2
thi h
M,,; 5 (3-80)
where:
oy; = total normal stress on anchor i
Ni = total axial force on anchor i
My = total moment on anchor i about x-axis due to total shear forces
Myi = total moment on anchor i about y-axis due to total shear forces
F«i = total shear forces on anchor i in x-direction
Fyi = total shear forces on anchor i in y-direction
h = stand-off distance of anchor i
A = cross sectional area of the anchor bolt
r = radius of the anchor bolt
I = second moment of inertia of the anchor bolt
4. Determination of shear stresses due to the loads developed in steps 1 and 2.
The derivation of the following equation is detailed in Appendix D.
16
Ti = 37 Fri (3-81)
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Fri = \/(thi)z + (Ftyi)z (3-82)

where:

Ti = total shear stress on anchor i

Fri = resultant shear force on anchor i

Fwi = total shear forces on anchor i in x-direction
Fyi = total shear forces on anchor i in y-direction
d = diameter of the anchor bolt
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4 NUMERICAL STUDY

The main objective of the numerical study is to validate the developed analytical
equations, which used to determine the straining actions and stresses on the anchor bolts
with uniform and non-uniform stand-off distances. A numerical analysis using the
SAP2000 finite element analysis software package was used for modeling. The design of
experiment is consisted of four cases varied in the angle of the concrete surface: 0°, 2°, 4°,
and 5°. The case of angle 0° represents the anchor bolts with a uniform stand-off distance.
Angles: 2°, 4°, and 5°, represent the case of anchor bolts with non-uniform stand-off
distances. Table 4.1 exhibits the details of the design of experiment related to the numerical
study. The table indicates that the uniform stand-off distance has brought to change to
represent the excessive and non-excessive uniformity cases, it which the uniform stand-off
distances are ranged between 0.75-in and 3-in. It can also be seen from the table that the
lowest anchor bolt stand-off distance for angles: 2°, 4°, and 5°, is 1-in, which is lower than
the anchor bolt diameter. The reason for that is to configure if there are limitations for the
developed analytical equations, which related to the change of the percentages of the
excessive to non-excessive stand-off distances.

Table 4.1 Design of experiment for the numerical study

Anale Diameter of Uniform Excessive Non-Uniform
(ag) Anchor (do), in Stand-off Uniform Stand- Stand-off
o T Distance off Distance Distances
0.5do =0.75 in. 2in.
0 15 _ _ —
do=1.5in. 3in.
2 15 —_— —_— do(min) =1 in.
4 15 —_— —_— do(min) =1 in.
5 2 — — do(min) =1in.

4.1 Design of Specimens

The double-nut moment joint that used in the numerical study, is equipped with eight
anchor bolts attached to a base plate with a thickness of 1.25 in. The schematic shown in
Figure 4.1 demonstrates the cross sectional dimensions of the specimens. As shown in the
figure, the anchor bolts are having the same spacing, and the dimensions of the inner and
outer diameter of the base plate are 24 in and 35 in, respectively. It can also be seen that
the diameter of the anchor bolts circle is equal to 30 in. It should be noted that the
specimens were modeled without the presence of pole. The absence of pole will not
influence on the final results, since the scope of this analysis is to quantify the straining
actions on the anchor bolts.
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Figure 4.1 Layout of the double-nut moment joint

The schematics shown in figures (4.2, 4.3, 4.4, and 4.5) illustrate the anchor bolts stand-
off distances with respect to the angles of the concrete surface (a°). As shown in Figure
4.2, the anchor bolts are having a uniform stand-off distance (¢) that, according to the
design of experiment, is ranged between 0.75-in and 3-in, with a diameter of 1.5-in. The
stand-off distances of the anchor bolts shown in Figure 4.3, corresponded to a = 2° in +x-
direction, are ranged between 1-in and 1.9679-in. This angle is tended to provide a fifty-
fifty mixture between the excessive and non-excessive stand-off distances. In case of a =
4° in +x-direction, indicated in Figure 4.4, the anchor bolts stand-off distances are ranged
between 1-in and 2.9381-in. This angle is attributed to increase the percentage of excessive
stand-off distances to 75%, and decrease the percentage of non-excessive stand-off
distances to 25%. Figure 4.5 provides the distribution of anchor bolts stand-off distances
with respect to o = 5°. The figure exhibits that the angle was carried out along the line that
passes through anchor #1 and #5. The stand-off distances are ranged between 1-in and
3.6247-in, which consequent a percentage of excessive stand-off distances of 62.5%, and
37.5% for non-excessive stand-off distances. There are two distinct criteria that distinguish
the joint with angle 5° from the other considered angles. The first criterion is that the joint
with an angle 5° has anchor bolts with a diameter of 2-in, whereas the other joints have 1.5-
in. The second criterion is that the concrete surface is inclined in +xy-direction in case of a
= 5°, whereas the direction is in +x-direction for the other two angles. Those changes were
aimed to increase the level of discrepancy in the direction of loading.
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Figure 4.2 Distribution of anchor bolts stand-off distances with a = 0°

Figure 4.3 Distribution of anchor bolts stand-off distances with a = 2° in +x-
direction
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Figure 4.4 Distribution of anchor bolts stand-off distances with a = 4° in +x-
direction

5. %

Figure 4.5 Distribution of anchor bolts stand-off distances with o = 5° in +xy-
direction
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4.2 Modeling and Boundary Conditions

The element types used to model the joint were frame elements for anchors and shell
elements for the base plate. This study is focused on the anchor bolts; therefore the presence
of pole as well as the nuts and washers were neglected. The presence of threads was also
not considered because the area taken in the analysis was the gross area. Therefore, the
final results will not be influenced by the absence of threads. A close up of the components
of a real double-nut moment joint is illustrated in Figure 4.6. As shown in the figure, the
anchor bolts are connected to the base plate by two nuts and two washers. The forces
induced from wind loading are applied on the anchor bolt at the section beneath the bottom
of the leveling nut. The figure also shows an extruded view from SAP2000, that exhibit
the connection between the anchor bolt and the base plate in modeling. The anchor bolt is
directly connected to the base plate, and the stand-off distance is measured from the
centerline of the base plate to the fixed node.

Top Washer —\ rBase Plate

Bottom _ [ | S\ Bottom Washer

r Base Plate

- [
<< Anchor Bolt

- . < Anchor Bolt
r Concrete Foundation
.

I~ <« Fixed node

Figure 4.6 Real joint versus simulated joint

The boundary conditions for the anchor bolts were considered to be completely fixed
at the bottom (connection between the anchors and the concrete surface), and full body
constraint at the top (connection between the anchor and the base plate). Figure 4.7 shows
a snap shot from SAP2000 that demonstrates the boundary conditions of the connection.
The figure indicates that the loads were applied at the center of the base plate. Those loads
should be transferred to the anchors; therefore a point was inserted at the center of the base
plate. The anchor bolts are connected to that point through full body constraint. The
criterion of the full body constraint is that the connected joints are translating and rotating
as a rigid body.
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Fixation —— - 1] L

Figure 4.7 Boundary conditions of the connection
4.3 Loading Conditions

The dimensions of the overhead cantilevered sign structure investigated by Hosch
(Hosch 2013) was used to determine the applied loads on the joint under investigation. The
sign is consisted of a pole with a height of 26.75 ft and a truss arm with a length of 32 ft.
The induced loads due to a force of 0.75 kip in x and y directions are: torsion (T) =
0.75x32x12 = 288 Kip.in, My = My = 0.75x26.75x12 = 240.75 Kip.in, and Vyx = Vy = 0.75 Kkip.
Figure 4.8 shows the directions of the applied loads on the c.g of the base plate. Those
loads will be used, in the following section, to verify the boundary conditions and structural
elements specified in the numerical model.

Moment Group Torsion Direct Shear Forces
Figure 4.8 Application of load on SAP2000 Model
4.4 Verifying the Numerical Model

Before applying the design of experiment table illustrated at the beginning of this
chapter, the numerical model should first be verified. The aim of this section is to verify
the boundary conditions and the structural elements in the numerical model. The numerical
model was intended to be verified using equations both; validated experimentally and
specified in 2013 Supports Specifications. Those equations are limited to anchors with a
uniform strand-off distance.
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2013 Supports Specifications specified to Equation (2-2) to determine the axial stresses
due to moment group. This equation has been proved experimentally by NCHRP Report
412 (Kaczinski, Dexter, and Dien 1998). 2013 Supports Specifications also specified
Equation (2-8) to calculate the resultant shear forces due to torsion. Those equations were
listed in the background section in this report, but they repeated herein for demonstration.

M
o= TC (2_2)

where:

= axial stress due to bending on the individual anchor

group moment

polar moment of inertia of the anchor group

= distance between the centroid of the anchor group and the anchor under
investigation in the direction of moment

o —=zQq
I

F = T (2-8)

where:

= shear force due to torsion

torsional moment

= distance between the c.g. of the anchor group to the outmost anchor
= polar moment of inertia of the group of anchors

o= 4
11

The schematic exhibited in Figure 4.1 was adopted in the numerical model, with the
following characteristics: (1) the diameter of anchors is 1.5-in; and (2) the uniform stand-
off distance is 1-in. The considered forces are specified in the previous section [4.3]. Those
forces were applied at the center of the base plate.

2013 Supports Specifications specified that, if the anchor bolts are having a uniform
stand-off distance less than the anchor bolt diameter, the bending stresses shall be ignored.
For accuracy purposes, the bending stresses were considered in the analysis of the joint
under investigation. The boundary conditions of the anchor bolts are: fixed at the bottom,
and full body constraint at the top. Those boundaries are promised to simulate the beam
model specified by 2013 Supports Specifications. The beam model criterion is that the
anchors are permit to translate but not to rotate. To recap, the considered boundary
conditions and the selected structural elements were being tested, to verify the numerical
model.

Results and discussion

The results illustrated in Table 4.2 represent a comparison between the straining actions
induced from the analytical and numerical analysis. As shown in the table, the forces
induced from the analytical Equations (2-2 and 2-8), are identical with those from the
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numerical model. The numerical results exhibited in Table 4.2 are given in Figure 4.9. The
figure demonstrates the shear forces on each anchor bolt, in x and y directions, as well as
the axial force. The details of the analytical equations are provided in the Appendix E
section.

Table 4.2 Comparison between analytical and numerical straining actions

Anchor# (F)an 2(F)nu 3(Fy)an 4(Fy)nu °(N)an 8(N)nu

-2.12 -2.12 1.01 1.01 5.24 5.24
-0.82 -0.82 2.31 2.31 5.24 5.24
1.01 1.01 2.31 2.31 2.17 2.17
231 2.31 1.01 1.01 -2.17 -2.17
2.31 2.31 -0.82 -0.82 524 524
1.01 1.01 -2.12 -212 524 524
-0.82 -0.82 -2.12 -212 217 -2.17
-2.12 -2.12 -0.82 -0.82 2.17 2.17

1(FX)AN . analytical shear force in x-direction
Z(Fx)NU : numerical shear force in x-direction
3(Fy)AN . analytical shear force in y-direction
4(Fy)NU : numerical shear force in y-direction
5(N)an : analytical axial force
6(N)NU : numerical axial force

O~NO O WN B

Z
220 o)
% / \p )g%,)/

Yz
N

gbrL \{
PN \¥%
.‘"" f]/ y

Shear in x-direction Shear in y-direction Axial force

Figure 4.9 Numerical straining actions

Table 4.3 shows a comparison between the numerical and analytical normal stresses on
each anchor within the group. The results indicated in the table confirm that the boundary
conditions and element types, specified in the numerical model, are correct, in which the
analytical and numerical stresses are almost identical. The highest percentage of difference
with respect to the analytical stress is equal to 3.91%. Figure 4.10 displays the numerical
stresses that indicated in Table 4.3. As inferred from the above discussed results, the
numerical model is verified and can be used to validate the developed analytical equations.
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Table 4.3 Comparison between analytical and numerical stresses

Anchor#  “(on)an “(on)NU %
1 7.70 7.69 0.11
2 7.70 7.69 0.11
3 6.24 6.46 3.46
4 6.24 -6.46 3.46
5 7.70 -7.69 0.11
6 7.70 -7.69 0.11
7 5.68 -5.90 3.91
8 5.68 5.90 3.91

“(on)an  : analytical normal stress
“(on)nu - numerical normal stress

Figure 4.10 Numerical stresses
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S RESULTS AND DISCUSSION

In Chapter 4, the structural elements and boundary conditions developed in the
numerical model was verified. The numerical model will then be used to validate the
developed analytical equations in Chapter 3. The design of experiment expressed in table
4.1 was used to validate the analytical equations. The cases indicated in that table were
subjected to the loads established in the section [4.3] in Chapter 4. The schematic displayed
in Figure 5.1 represents an example of a joint that modeled on SAP2000, with the pre-
calculated loads that applied on the center of the base plate. The results induced from the
numerical analysis are compared to their correspondence from the developed analytical
equations. The compatibility of the analytical results with the numerical results will
determine the reliability of the analytical equations.

Figure 5.1 Example of a joint with the applied loads

5.1 Induced Forces from the Analytical and Numerical Analysis

Two different sets of variables: anchor bolts with a uniform stand-off distance and non-
uniform stand-off distances. The findings associated with each variable will be discussed
in the following sections.

5.1.1 Forces on Anchors having a Uniform Stand-off Distance

A series of uniform stand-off distances ranged between 0.75-in and 3-in were
investigated to test the developed analytical equations under induced wind loads. Figure
5.2 demonstrates the staining actions on the anchor bolts with a stand-off distance equals
to 1-in. This figure is a representative of all the other uniform stand-off distances. It was
found that all the uniform stand-off distances were given the same straining actions. This
can be explained by the compatibility of the center of rigidity with the center of gravity.
Hence, the anchor bolts that having any level of uniform stand-off distance will result in
the same straining actions. It should be noted that the shear forces are applied on the anchor

54



at the section below the leveling nut, as illustrated previously in Figure 4.6 in Chapter 4,
whereas the forced applied axially are distributed on the entire stand-off distance. The
figure indicates that the developed analytical equations provided shear and axial forces that
complied with their correspondence numerical forces. This means that the analytical
equations adopted to calculate the straining actions are accurate and valid to design the
anchor bolts with uniform stand-off distance.

WKk o Rk NwW

Shear in x-direction, kip

1 2 3 4 5 6 7 8
® Fx-Numerical |-2.12(-0.82(1.01{2.31(2.31 | 1.01 {-0.82|-2.12

Fx-Analytical |-2.12]-0.82(1.01]2.31{2.31|1.01/-0.82-2.12
Anchor Bolt

W N R O R NW

Shear in y-direction, kip

1 2 3 4 5 6 7 8
m Fy-Numerical | 1.01(2.31{2.31{1.01(-0.82(-2.12(-2.12|-0.82

Fy-Analytical {1.01{2.31(2.31(1.01(-0.82(-2.12-2.12|-0.82
Anchor Bolt

+ indicate tension
- indicates compression

Axial Force, kip
S AN o N~

1 2 314/(|°5 6 7 8
M Axial-Numerical [5.24|5.24|2.17(-2.1|-5.2(-5.2|-2.1]2.17

Axial-Analytical |5.25|5.25(2.17(-2.1|-5.2|-5.2|-2.1|2.17
Anchor Bolt

Figure 5.2 Comparison between analytical and numerical forces for uniform stand-
off distance of 1-in

5.1.2 Forces on Anchors having Non-uniform Stand-off Distances

Figure 5.3 exhibits a comparison between the straining actions induced numerically,
and analytically for anchors with non-uniform stand-off distances. The figure is divided
into three groups, in each of which three bar charts were drawn to represent the shear forces
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in x and y directions, and the axial forces. The groups are differing in the angle of
inclination («°). Three angles were studied: 2°, 4°, and 5°. The figure indicates an obvious
compatibility between the straining actions obtained by applying the developed analytical
equations, and their correspondence from the numerical analysis. It is worth mentioning to
observe that the anchors that possess the lowest stand-off distances have the highest forces
and vice versa. This can be explained by their closeness to the center of rigidity, in which
the anchors are adapted to carry more forces when they near the center of rigidity. The
above results and discussions have revealed the validity of adopting the developed
analytical equations to calculate the straining actions on the anchor bolts having uniform
and non-uniform stand-off distances.

Shear in x-direction, kip
W NRFP ORFPNWLD

1 2 3 4 5 6 7 8
® Fx-Numerical [-2.56(-1.40( 1.74|2.78( 1.78 | 0.58 |-0.50|-1.66
Fx-Analytical (-2.58]-1.43(1.73|2.79]1.79(0.59 |-0.49|-1.66

Anchor Bolt
o 4
2
s 3
o
s 2
d
= 1
o
L0
[ =
£ 4
©
9 2
& 1234|556 7]38

B Fy-Numerical | 0.40]2.81(2.81]|0.40|-1.18-1.65|-1.65-1.18
Fy-Analytical | 0.40(2.80(2.80|0.40(-1.17|-1.65|-1.65(-1.17
Anchor Bolt

+ indicate tension
- indicates compression

Axial Force, kip
A A NONPM OO

1 2 3 4 5 6 7 8
M Axial-Numerical |5.01]|6.46|2.09| -3.2|-5.0|-4.3|-2.1|1.19

Axial-Analytical |5.02(6.47(2.10{-3.2(-5.0|-4.3[-2.1]1.20
Anchor Bolt

Inclination angle — a = 2°
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Shear in x-direction, kip

1 2 3 4 5 6 7 8

® Fx-Numerical [-2.90(-2.20| 2.66 | 3.09 | 1.41| 0.37|-0.34/-1.35

Fx-Analytical |-2.92|-2.25(2.64(3.12(1.44]0.39[-0.33|-1.35

Anchor Bolt

'
N

Shear in y-direction, kip

1 2 3 4 5 6 7 8

M Fy-Numerical [-0.19] 3.10( 3.10|-0.19|-1.25(-1.29]|-1.29(-1.25

Fy-Analytical {-0.19]3.09|3.09(-0.19|-1.24|-1.29|-1.29|-1.24

Anchor Bolt

+ indicate tension
-indicates compression

Axial Force, kip

[
[o) -

1 2 3 4 5 6 7 8

H Axial-Numerical | 4.66]7.38(1.90( -3.7 | -4.8|-3.9|-2.0]0.72

Axial-Analytical |4.67|7.39(1.90(-3.7|-4.8]-3.9|-2.0|0.72

Anchor Bolt

Inclination angle — o = 4°

Shear in x-direction, kip
AN

1 2 3 4 5 6 7 8

M Fx-Numerical [-3.52(0.75(1.95|1.48(1.12|0.92|0.28|-2.22

Fx-Analytical [-3.57|0.74(1.96(1.49|1.14(0.93|0.29(-2.23

Anchor Bolt
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Shear in y-direction, kip
PWNRPRORNWA_O

1 2 3 4 5 6 7 8
® Fy-Numerical | 1.87(4.12(1.62|0.20|-0.45|-1.15(-2.41-3.05

Fy-Analytical | 1.83]4.11(1.63|0.21(-0.44|-1.14{-2.40]-3.06
Anchor Bolt

+ indicate tension
-indicates compression

Axial Force, kip

SR NONDO®O

1 2 31415 6|7 |8
m Axial-Numerical | 7.61]|5.60|0.58| -2.4 | -4.0| -4.5|-3.5|0.72

Axial-Analytical |7.63(5.61(0.58(-2.4(-4.0|-4.5(-3.5]0.72
Anchor Bolt

Inclination angle — o = 5°

Figure 5.3 Comparison between analytical and numerical forces for anchor bolts
with non-uniform stand-off distance

5.2 Induced Stresses from the Analytical and Numerical Analysis

The analysis discussed in the previous sections has confirmed the eligibility of the
developed analytical equations, to obtain the straining actions on the anchor bolts with
uniform and non-uniform stand-off distances. The determination of stresses was the step
that followed by the calculation of straining actions. The analytical and numerical forces
expressed in section [5.1] were transformed into normal stresses and compared, to confirm
the accuracy of the developed analytical equations. In order to determine the maximum
normal stress for each anchor: (1) combine the bending stresses due to shear forces in x
and y directions, regardless of the sign; (2) add the absolutes of the summation of bending
stresses and axial stress to obtain the maximum normal stress; and (3) the determination of
whether the anchor has a compression or tension stress, can be configured from the sign of
the axial force.

5.2.1 Stresses on Anchors having a Uniform Stand-off Distance

The discussion herein this section was adopted to confirm the approach used to
determine the normal stresses. A comparison between the numerical and analytical normal
stresses was dedicated to validate the analytical approach. The comparison indicated in
Figure 5.4 concerns the case of anchor bolts with uniform stand-off distances. The figure
is dissected into four bar charts, each of which has a uniform stand-off distance. It can be
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indicated that the stresses are increasing with the increase of the stand-off distance. The
figure also shows that the numerical and analytical normal stresses are compatible. This
means that the analytical approach is applicable to determine the normal stresses on the
anchor bolts with uniform stand-off distances.

Normal Stress, ksi
oM ANONDNOO®

1 2 3 4 5 6 7 8
® o-Numerical | 6.51 | 6.51 | 5.21 |-5.21|-6.51|-6.51|-4.79( 4.79
® o-Analytical | 6.52 [ 6.52|4.99 |-4.99|-6.52|-6.52(-4.57 | 4.57

Anchor Bolt

15
10 €=1.5-in
0
5
-10
-15

Normal Stress, ksi

1 2 3 4 5 6 7 8
® o-Numerical {10.05{10.05| 8.97 |-8.97}10.03-10.05-8.12( 8.12
® o-Analytical (10.07[10.07| 8.75 |-8.75}10.04-10.07-7.91 7.91

Anchor Bolt

15

10 € =2-in

Normal Stress, ksi
o

-10
-15

1 2 3 4 5 6 7 8
® o-Numerical (12.41(12.41{11.46}11.46-12.41+12.41110.3310.33|
W o-Analytical (12.44(12.44(11.26}11.26-12.4412.4410.1310.13

Anchor Bolt
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Normal Stress, ksi
N . . 1 = =N
O Ul o vl o ul o vl o

N P

1 2 3 4 5 6 7 8
o-Numerical (17.12(17.12(16.45}16.4%17.1217.1214.7514.75
o-Analytical [17.18|17.18(16.28[16.2817.1817.1814.5814.58

Anchor Bolt

Figure 5.4 Comparison between numerical and analytical normal stresses for
anchor bolts with a uniform stand-off distance

5.2.2 Stresses on Anchors having Non-uniform Stand-off Distances

The investigation was extended to analyze the normal stresses for the case of anchors
with non-uniform stand-off distances. Error! Reference source not found. exhibits a
comparison between the normal stresses induced from the analytical approach and the
numerical analysis, for different inclination angles. The table shows that the normal
stresses, for the anchor group having o = 5°, were lower than those in the other two angles.
The reason is that the diameter of the anchor group with angle equal to 5° is 2-in, whereas
the diameter is 1.5-in for the other two angles. In case of angle 2°, the highest percentage
of difference was observed in anchor #3 with a magnitude of 4.3%. Similarly, the highest
percentage of difference was recorded in the same anchor with 4.61%, in the case of o =
4°. Anchor #2 was observed to have the highest percentage of difference of 5.12%, for o =
5°. As also noticed in the table, the highest percentages of differences were not observed
for the anchors having the highest stresses. The recorded percentages of difference for
those anchors were ranged between 0.36% and 0.69%.

Table 5.1 Numerical and analytical stresses for anchors with non-uniform stand-off
distances

a=2° a=4° a=5°
Anchor #
“(on)Aan T(en)nvu % (en)an (en)nu % (en)an (en)nu %
1 8.60 8.56 0.44 998 10.19 212 | 5.69 569 0.05
2 10.05 10.01 0.36 12.24 1218 0.49 | 5.52 5.8 5.12
3 8.03 8.37 4.30 9.73 10.18 461 551 564 227
4 -7.99 -8.21 2.82 -9.96 -99 059 -467 -469 0.40
5 -1042 -10.37 0.43 | -12.35 -12.26 0.69| -534 -533 0.20
6 -9.12 -9.08 0.42 -969 -9.62 0.71 -6.07 -6.06 0.11
7 -7.56 -71.75 2.56 -837 -858 249 | -495 -495 0.03
8 7.88 8.07 2.45 9.67 9.87 210, 453 476 5.11
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*(O'N)AN - analytical shear force in x-direction
**(O'N)NU: numerical shear force in x-direction

The recap of the above discussed sections is that the developed analytical procedure,
adopted to calculate the staining actions and stresses is valid to design the anchor bolts with
uniform and non-uniform stand-off distances.

5.3 Design Example

This section is dedicated to detail the design steps using the developed analytical
equations for anchor bolts having non-uniform stand-off distances. The joint adopted in
this example is very similar to the joint investigated by Hosch (2013). The joint represents
a case within the design of experiment discussed in Chapter 4. The angle used in this design
example is equal to 5°.

Two design approaches will be displayed. The first approach would be using the
developed analytical equations to calculate the stresses. The second one is to calculate the
stresses using the equations specified by 2013 Supports Specifications. The results
accompanying the two approaches will be compared to evaluate the standpoint of using
2013 Supports Specifications equations in the design of anchor bolts with non-uniform
stand-off distances. The design details are expressed in Appendix F.

Figure 5.5 shows a comparison between the normal stresses calculated using the two
design approaches: developed analytical equations and 2013 Supports Specifications. It can
be noticed that there is a severe difference between the stresses calculated using the
analytical approach and their correspondence designed by 2013 Supports Specifications.
The highest recorded normal stress using the developed analytical equations was equal to
6.07 ksi, whereas a stress of 8.9 ksi was recorded using 2013 Supports Specifications
equations. This means that the percentage of increase in stresses using 2013 Supports
Specifications equations has reached 46.6%, with respect to the analytical equations.

2013 Support
Specification

= Analytical

Figure 5.5 Comparison between uniform and non-uniform normal stresses
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Figure 5.6 shows a comparison between the shear stresses determined using the
developed analytical equations and 2013 Supports Specifications. It can be noticed that
there is a uniform distribution of shear stresses calculated using 2013 Supports
Specifications. The reason is that the equations used to determine the straining actions do
not rely on the stand-off distance. On the other hand, the shear stresses calculated using the
analytical equations have irregular distribution because of the inclusion of the stand-off
distance term in the design equations. The figure also indicates that the highest shear stress
determined using the analytical equations was equal to 1.63 ksi, whereas a shear of 1.07
ksi was calculated using 2013 Supports Specifications.

= 2013 Support
Specification

Anchor 7 .
= Analytical

Figure 5.6 Comparison between uniform and non-uniform shear stresses

It can be concluded from the above results and discussions that using 2013 Supports
Specifications equations for the design of anchor bolts with non-uniform stand-off
distances is not accurate and uneconomic.
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6 DISCUSSIONS AND RECOMMENDATIONS

The main objective of this project is to investigate the effect of non-uniform stand-off
distances on the stress distribution of the anchor bolts within the double-nut moment joint
connection. Three specific objectives are specified. Specific objective #1 is: perform
analytical study to identify the mechanical relationships that govern the behavior of the
connection with respect to non-uniform stand-off distances. The analytical study was based
on idea of how the lateral loads are distributed on shear walls as a result of wind and seismic
loads. It was found that the key factor that determines how the loads are distributed on the
anchors with uniform or non-uniform stand-off distances is the stiffness. The distribution
of lateral loads on the anchor bolts is governed by the lateral stiffness that deduced from
the bending and shear deflections. On the other hand, the distribution of axial forces is
governed by the axial stiffness that deduced from the axial deflection. It was found that the
lateral loads on anchors induce: direct shear forces, torsion due to direct shear forces (in
case of anchors with non-uniform stand-off distances), and torsion due to wind loading.
The axial loads on anchors are come from: the own weight of the structure and the group
of moments induced from: direct shear forces, total own weight of the structure (in case of
anchors with non-uniform stand-off distances), and wind loads.

The second specific objective is: perform numerical study using finite element analysis
(FEA) to validate the developed mechanical relationships. A numerical analysis using the
SAP2000 finite element analysis software package was used for modeling. The design of
experiment is consisted of four cases varied in the angle of the concrete surface: 0°, 2°, 4°,
and 5°. The case of angle 0° represents the anchor bolts with a uniform stand-off distance.
Angles: 2°, 4°, and 5°, represent the case of anchor bolts with non-uniform stand-off
distances. The element types used to model the joint were frame elements for anchors and
shell elements for the base plate. The boundary conditions for the anchor bolts were
considered to be completely fixed at the bottom (anchors/concrete surface), and full body
constraint at the top (anchors/the base plate). It was found that the stresses calculated using
the developed analytical equations are compatible with their correspondence induced from
the numerical model. This means that the analytical equations are valid to be used to
calculate the stresses on anchor bolts with uniform or non-uniform stand-off distances. The
third specific objective is: propose design methodology applicable for evaluating the
stresses on the anchor bolts with uniform and non-uniform stand-off distances. The design
methodology can be concluded in determining the straining actions due to lateral loads and
axial loads on anchors, then transform those forces into stresses. The stresses should be
compared to the limitations specified by 2013 Supports Specifications.
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7 CONCLUSIONS AND FUTURE RESEARCH

The results and discussions implemented in this report have revealed the following
design equations, the used to determine the loads on the anchors with uniform and non-
uniform stand-off distances.

e Stiffness of anchor bolts:

where:

a

>—Om=D T X

o (2, 10h -
L7 \12E1 T 9G4

stiffness of anchors with stand-off distances due to lateral loading
stiffness of anchors with stand-off distances due to axial loading
lateral load

stand-off distance

modulus of elasticity of the anchor

modulus of rigidity of the anchor

anchor second moment of inertia

anchor cross sectional area

Center of rigidity:

where:

SIS 2 21

n
7 = Di=1 Kui x;
i=1 0
n
o i1 Ky
= n
n
o di=1Kaix;
a— n
Zi=1Kai

n

7 oo Zi=1 Kai yi

a— n

x-coordinate of the center of rigidity due to lateral loading
x-coordinate of the center of rigidity due to axial loading
y-coordinate of the center of rigidity due to lateral loading
y-coordinate of the center of rigidity due to axial loading
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Kii = stiffness of anchor i due to lateral loading

Kai = stiffness of anchor i due to axial loading
Xi = x-coordinate of anchor i
Yi = y-coordinate of anchor i
n = number of anchor bolts

e Shear forces due to direct shear loading:

Fiyi =V,
1xt X ‘{1_1 Kli
Eo. =1 Kj;
DETYYR Ky
where:
Fui = shear force on anchor i in x-direction due to direct shear loading
Fii = shear force on anchor i in y-direction due to direct shear loading
Vy = direct shear loading in x-direction
Vy = direct shear loading in y-direction
Kii = stiffness of anchor i due to lateral loading

e Torsion due to direct shear forces:

T' =4V X £V, ¥,
where:
T = shear force on anchor i in x-direction due to direct shear loading
Vy = direct shear loading in x-direction
Vy = direct shear loading in y-direction
X = x-coordinate of the center of rigidity due to lateral loading
Y, = y-coordinate of the center of rigidity due to lateral loading

e Shear forces due to torsion:

P K yi
i =
Y Ky (R 4y

Ki; x;

Fppy =T
vt ?=1Kli (xl2 + ylz)

where:
Fo«i = shear force on anchor i in x-direction due to torsion
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Fayi = shear force on anchor i in y-direction due to torsion

T = torsional moment pure torsion and direct shear loading

Kii = stiffness of anchor i due to lateral loading

Xi = distance between anchor i and the c.r. due to bending and shear in x-
direction

yi = distance between anchor i and the c.r. due to bending and shear in y-
direction

e Moment group due to direct shear loading:

(Mgroup) —Zn:F 2 (3-52)
Group ), — ' lyi 2
=1
n
(Mgroup) —zF o (3-53)
Group 1y - : Ixi 2
=1
where:
(Marowp)1x = group moment about x-axis due to direct shear loading in y-direction
(Marowp)yy = group moment about y-axis due to direct shear loading in x-direction
Fixi = total lateral force on anchor i in x-direction due to direct shear loading
and torsion
Fiyi = total lateral force on anchor i in y-direction due to direct shear loading
and torsion
hi = stand-off distance of anchor i

e Axial forces due to the structure own weight:

_ Kai
Nip = Nowsn—p— (3-55)
i=1"at
where:
Nii = axial force on anchor i due to the total own weigh of the structure
Now = total own weight of the structure
Kai = axial stiffness of anchor i

e Moment group due to the structure own weight (for the case of anchors with non-
uniform stand-off distances):

(MGTOUP)Zx =* Now- Y+ (Mprms+attachments)x (3-58)

>
=+

(MGroup)zy =t Now- (MArms+attachments)y (3-59)



where:

(Maroup)2x = group moment about x-axis due to the total own weight of the
structure

(Maroup)2y = group moment about y-axis due to the total own weight of the
structure

(Marms+Attachments)x group moment about x-axis due to arms and attachments, if
applicable

(Marms+Attachments)y group moment about y-axis due to arms and attachments, if
applicable

No.w = total own weight of the structure

X, = x-coordinate of the center of rigidity due to axial loading

Y, = y-coordinate of the center of rigidity due to axial loading

e Axial forces due to moment groups:

Kal yl
NZL - (MGroup)tx 2 al yl (3-83)
Kal xl
3-84
( Group)tyz Kal x ( )
where:
N2i = total axial force on anchor i due to group bending moments about x-axis
Nsi = total axial force on anchor i due to group bending moments about y-axis
(Mgrowp)x = total group moment about x-axis due to wind loading in y-direction, direct
shear forces, and total own weight
(Mgrowp)ty = total group moment about y-axis due to wind loading in x-direction, direct
shear forces, and total own weight
Xi = distance between anchor i and the c.g. of anchor group in x-direction
Yi = distance between anchor i and the c.g. of anchor group in y-direction
e Normal stresses:
Nti Mxi T Myl r
=+—4 3-78
e (3-78)
Fryi-h
My === (3-79)
2
Ft i h
iy xé (3-80)

where:
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total normal stress on anchor i

Oni ~— : _
Ny = total axial force on anchor i
Mxi = total moment on anchor i about x-axis due to total shear forces
Myi = total moment on anchor i about y-axis due to total shear forces
Fwi = total shear forces on anchor i in x-direction
Fyi = total shear forces on anchor i in y-direction
h = stand-off distance of anchor i
A = cross sectional area of the anchor bolt
r = radius of the anchor bolt
I = second moment of inertia of the anchor bolt
e Shear stresses:
16
7, = 3 Fpi (3-81)
2
FRi = \/(thi)z + (Ftyi) (3-82)
where:
Ti = total shear stress on anchor i
Fri = resultant shear force on anchor i
F«i = total shear forces on anchor i in x-direction
Fyi = total shear forces on anchor i in y-direction
d = diameter of the anchor bolt
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Appendix A — Derivation of bending deflection for individual anchor bolt
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Free to translate M= PI/Z A PL, |

not to rotate P — P
P— T . P X koxox W P -
i ix
1
' MA BV
i
h h | R
1 |||
| il
"t
|!|
I.-l_' Pe— 3—- — y—‘—‘—\t <——P
Fixed PL
M="PL/ 75

Bending Deflection of the Individual Anchor Bolt
YM@A =0
Px Ph
2 2
Ph
M = >~ Px

Elastic curve differential equation:
d’y M Ph Px

dx? EI _2El EI
dy Ph Px?

Integrating: I Ex BT + C;
. Ph , Px?
Integrating: y = mx ~CEl +Cix+ G,

Boundary conditions:

Slop (d—y)=0 -x=0
dx

Deflection (y) =0 »x=nh
By substituting (3) in (1) - C1=0

By substituting (4) in (3) —» 0 —P—hh2 —P—h3+0+C
y g (4)in (3) =15 <El 2
Ph3
C2 =~ 1280
Ph , Px® Ph
Y= 4E1Y T 6El T 12E1
. _ Ph3  Ph3
For x = 0 (Point of max deflection) - y = ~T2El — T2E1
Ph3
Ao =175
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Appendix B — Derivation of shear deflection for individual anchor bolt
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T=7 (1

where:

T = shear stress

P = shear force

A = cross section area

G=— @
Vs
where:

G = modulus of rigidity
¥s = shear strain

P
By substituting (1) in (2) - G = E

N

P
Vs = GA
6.5‘ P . .
Vs = T-CA where: 4§y is the shear deflection
Ph
8 =77 3
By multiplying equation (3) by a factor k
o, =k g—z where: k is the correction factor
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Appendix C — Derivation of axial deflection for individual anchor bolt
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-ll:_

Axial Deflection of the Individual Anchor Bolt

B P
0y =7
where:

o4 = axial stress
P = axial force
A = cross section area

Oyg
E =—
£
where:

0, = modulus of elasticity
¢ = axial strain

P
By substituting (1) in (2) » E = P

P
T Ea

A, P
7T TEa

PL
Bo= o
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Appendix D — Derivation of shear stresses on anchor bolts
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Q=A4"y

. A md?

=33

, 4r  2d

Y =377 3
nd? 2d d3
-8 31 12
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I=r

Q > 64 1
16
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Appendix E — Numerical model verification
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1. Equations that used to calculate the normal stresses on the anchor bolts

Notation:

Fr = resultant force due to torsion on each anchor

T = torsional moment

r = radius of the anchor bolt group

J = polar moment of inertia of anchor bolt group

n = number of anchor bolts

Frad = resultant force due to torsion on anchor i in x-direction
Fryi = resultant force due to torsion on anchor i in y-direction
oi = angle between horizontal and resultant forces due to torsion for anchor i
Vii = force due to direct shear on anchor i in x-direction

Vyi = force due to direct shear on anchor i in y-direction

Vix = total direct shear on anchor i in x-direction

Viy = total direct shear on anchor i in x-direction

Fxi = total force on anchor i in x-direction

Fyi = total force on anchor i in y-direction

owi = bending stress on anchor i about x-direction

owi = bending stress on anchor i about y-direction

e = stand-off distance

S = elastic section modulus

2mi = total bending stress on anchor i

(Maroup)x = total group bending moment about x-axis
(Maroup)y = total group bending moment about y-axis

oxi = axial stress on anchor i due to moment about x-direction

oi = axial stress on anchor i due to moment about y-direction

Xi = distance between anchor i and the c.g of the anchor group i in x-direction
Yi = distance between anchor i and the c.g of the anchor group i in y-direction
A = Cross section area

OAi = total axial stress on anchor i

ONi = normal stress on anchor i

Stresses due to torsion and direct shear

F _Tr
R
J=n-1?
. T
R™n.r

Fryi = Frcos0;

FRyi = FRSinei
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i =5

Vi
Vyi:—y

n
Fyi = Vyi + Fryi
Fyi:Vyi+FRyi
Oy = Fyl'{)/z
1xi S
o -:—Fyilf/z
1yi S

Opi = O1xi T O1y;i
Stresses due to moment group

(MGroup)x Vi
Ooxi =~
y

(MGroup)y T X
Gy =T T
x

n
=) Ay

1

n
ZAL' 'xiz

1

Opi = Ozxi T 02y

Iy

Total stresses
ONni = Op; + 0y;

2. Properties

E = 29000 ksi d=15in

n=8 r=15in
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| =0.2485 in*
S$=0.3313in



3. Stresses due to torsion and direct shear

T =288 Kip-in

V= 0.75 kip

Viy = 0.75 Kip

(MGroup)x =240.75 kip-in

(MGroup)y = 240.75 kip-in

Anchor# x-in y-in  *@ cos@ sin@ Frx Fry
1 574 1386 225 092 0.38 -2.22 092 1
2 1386 574 675 0.38 0.92 -0.92 222 1
3 1386 574 675 038 0.92 092 — 222 1
4 574 1386 225 0.92 0.38 222 — 092 1
5 574 13.86 225 092 0.38 222 — -0.92 |
6 1386 574 675 038 0.92 092 — -2.22 |
7 1386 574 675 0.38 0.92 -0.92 -2.22 |
8 574 1386 225 092 0.38 -2.22 -092 |
*0 = tan" (x/y)
Anchor # Frx Fry Vx Vy Fx Fy
1 222 <~ 092 t 009 — 009 1T -212 ~ 101 1
2 -092 <~ 222 1t 009 — 009 t -082 ~— 231 1
3 092 — 222 1 009 — 009 7t 101 — 231 1
4 222 — 092 1 009 — 009 T 231 — 101 1
5 222 — -092 | 009 — 009 7 231 — -082 |
6 092 — -222 | 009 — 009 7t 101 — -212 |
7 -092 «— -222 | 009 — 009 t -082 ~ -212 |
8 222 « 092 | 009 — 009 7T -212 ~ -082 |
f ’(
4 | 4
s I 2 0 951%5
e L ot Lt A i
3 A\ | / 6 3 2g§ k_./ 6
— i —& o -8 6
\\0"\75\]5/ e Gm\‘\ NN
e : S i i i —X e S R :..*..: ....... —X
2 R | 0\.751(\ i s /i\ G 67
e TER A =8 2@ ¥ ex =
? N } mz 1ol 7
/ \
—® | e8

Direct Shear

83

Torsion



Anchor # ¢-in O1x o1y ob

1 1 1.53 3.20 4.73
3.49 1.24 4.73
3.49 1.53 5.01
1.53 3.49 5.01
1.24 3.49 4.73
3.20 1.53 4.73
3.20 1.24 4.45
1.24 3.20 4.45

0O ~NOoO ol WN
N N T = = W Y =Y

In order to determine the max bending stresses, the stresses in x and y directions should be
added together regardless of the sign.

4. Stresses due to moment group

Anchor#  x y X2 y2 A X2 Ay? Gx Gy  OA
1 574 13.86 3295 192.05 58.23 339.38 2.10 0.87 297
2 13.86 5.74 192.05 3295 339.38 58.23 087 210 297
3 13.86 5.74 192.05 32.95 339.38 58.23 -0.87 210 1.23
4 574 13.86 3295 192.05 58.23 339.38 -2.10 0.87 -1.23
5 574 13.86 3295 192.05 58.23 339.38 -2.10 -0.87 -2.97
6 13.86 5.74 192.05 32.95 339.38 58.23 -0.87 -2.10 -2.97
7 13.86 5.74 192.05 3295 339.38 58.23 087 -2.10 -1.23
8 574 13.86 3295 192.05 58.23 339.38 2.10 -0.87 1.23

¥ = 1590.44 1590.44

5. Total stresses

Anchor # ob OA ON
1 4.73 297 T 770 T
2 4.73 297 T 770 T
3 5.01 123 T 624 T
4 5.01 123 C 624 C
5 4.73 297 C 7.70 C
6 4.73 297 C 770 C
7 4.45 123 C 568 C
8 4.45 123 T 568 T
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Appendix F — Design example
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Design with the Developed Analytical Equations
1. Properties

fy = 55 ksi

E = 29000 ksi

1 [Poisson’s ratio] = 0.3
G =11153.85 ksi
d=2in

A =3.1416 in?

| =0.7854 in*
S$=0.7854 in®

2. Loads

Vx =0.75 kip —

Vy=0.75kip 1

T[Pure torsion] = 288 kip — in ™~
(Mx)Group = 240.75 Kip-in «
(My)roup = 240.75 Kip-in &

3. Layout of Anchor Bolts

4 ®5
3e ®6
2 @ ® 7
le ® 38
Anchor # X y h-in

-5.74  -13.86 1

-13.86  -5.74  1.3844
-13.86 5.74  2.3123
-5.74 13.86  3.2403
5.74 13.86  3.6247
13.86 574  3.2403

OO, WN -
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Anchor # X y h-in
7 13.86 -5.74  2.3123
8 5.74 -13.86  1.3844

4. Center of Rigidity (C.R.)

C.R. — due to stiffness of bending and shear

Calculations example of ki
Anchor #1:

h3

. - , 1o -
L7 \12E1 " 9GA

10x1

12x29000x0.7854 * 9x3.1416x11153.85

13
K11=< (1)

Anchor #2:

10x1.3844

12x29000x0.7854 * 9x3.1416x11153.85

(1.3844)3
K, = (

Summary of calculations

Anchor # h-in Kii
1 1 28274.33
2 1.3844 18654.74
3 2.3123 8434.93
4 3.2403 4400.96
5 3.6247 3458.11
6 3.2403 4400.96
7 2.3123 8434.93
8 5.74 18654.74
X= 94713.72

Determination of C.R.

1=

l =

n
i=1 Kui x;

n

-1
> = 28274.33 kip — in

-1
> = 18654.74 kip — in

(3-6)

(3-13)

(3-14)

X, = [-5.74x28274.33 + —13.86x18654.74 + —13.86x8434.93 + —5.74x4400.96
+ 5.74x3458.11 + 13.86x4400.96 + 13.86x8434.93
+ 5.74x18654.74]/94713.72 = —2.7257 in

87



Y, = [-13.86x28274.33 + —5.74x18654.74 + 5.74x8434.93 + 13.86x4400.96
+ 13.86x3458.11 + 5.74x4400.96 + —5.74x8434.93
+ —13.86x18654.74]/94713.72 = —6.5805 in

20 e 7
1.‘\ ® 3

C.R. — (-2.7257, -6.5805)

C.R. — due to stiffness of axial

EA
K, = e (3-8)
Calculations example of Kkai
Anchor #1:
3.1416x29000 ) )
Ky = 1 =91106.19 kip — in
Anchor #2:
K. = 3.1416x29000 — 65809.15 ki ]
2= " 13844 o fap T n
Summary of calculations
Anchor # h-in Kai
1 1 91106.19
2 1.3844 65809.15
3 2.3123 39400.68
4 3.2403 28116.59
5 3.6247 25134.82
6 3.2403 28116.59
7 2.3123 39400.68
8 5.74 65809.15
Y= 382893.84
Determination of C.R.
_ n K. x;
=1 at ~l
= &= atr? 3-15
a ?_zl Kai ( )
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n

- i=1 Kai Vi

Y, = 3-16
a ?=1 Kai ( )

Xq

[—5.74x91106.19 + —13.86x65809.15 + —13.86x39400.68
+ —5.74x28116.59 + 5.74x25134.82 + 13.86x28116.59
+ 13.86x39400.68 + 5.74x65809.15]/382893.84 = —1.7882 in

Y, = [-13.86x91106.19 + —5.74x65809.15 + 5.74x39400.68 + 13.86x28116.59
+ 13.86x25134.82 + 5.74x28116.59 + —5.74x39400.68
+ —13.86x65809.15]/382893.84 = —4.31702 in

1e ®3
C.R. — (-1.7882, -4.3170)

5. Shear Forces on the Anchor Bolts due to Direct Shear Loading

K,
O Fui = Ve (3-24)
i=1 0

+ve directions

AN Kj;

®F1yi=Vy n

= 3-25
i=1 Kli ( )

given: Vx = 0.75 kip —
given: Vy=0.75 kip 1
Calculations example of Fixi and Fiyi

Anchor #1:

28274.33 )
Fipy1 = O.75xm = 0.22 kip -

28274.33 ]
Fiy, = 0.75xm =022kip T
Anchor #2:

18654.74 ,
Fiyp = O.75xm = 0.15 kip =

18654.74 ‘
Fiy, = 0.75xm =0.15kip T
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Summary of calculations

Anchor # Kii Fxi Fuyi

1 2827433 0.22—  0.227
2 18654.74 0.15—  0.157
3 843493 0.07—  0.077
4 440096 0.03—  0.037
5 3458.11 0.03—  0.037
6
7
8

4400.96 0.03—  0.031
843493 0.07—  0.071
18654.74 0.15—  0.15
= 9471372 0.75—  0.75}

6. Induced Torsional Moment on the Anchor Bolts due to Direct Shear Loading

+verotation —( T’ = 4V, X, + V, Y (3-27)

given: Vyx = 0.75 kip —

given: Vy=0.75 kip 1

X = 2.7257 in [-ve x-direction]

Y =6.5805 in [-ve y-direction]

T' = 0.75x6.5805 — 0.75x2.27257 = 2.891 kip — in ™~

7. Shear Forces due to Pure Torsion and the Induced Torsion from Direct Shear
Loading

K yi
OF,;=T (3-42)
+ve directi£ N ?:1 K (xiz * in)
\ K: x;
DFyy =T bt (3-43)

‘lnzl Kli (xlz + ylz)
T' = 2.891 kip —in ~

given: T,[Pure torsion] = 288 kip — in ™~
T =2.891 + 288 = 290.891 kip — in ™~
4> 5 >




Calculations of x; and yi, with respect to the C.R. due to bending and shear
Anchor #1:

x, =574-2.73=3.01

y; = 13.86 — 6.58 = 7.28
Anchor #2:

x, = 13.86 —2.73 = 11.13

y, = ABS(5.74 — 6.58) = 0.84
Anchor #3:

x; =13.86 —2.73 = 11.13

y3 = 5.74 4+ 6.58 = 12.32
Anchor #4:

x, =5.74—-2.73 =3.01

vy, = 13.86 + 6.58 = 20.44
Anchor #5:

x5 =5.74 + 2.73 = 8.47

ys = 13.86 + 6.58 = 20.44
Anchor #6:

X¢ = 13.86 + 2.73 = 16.58

V¢ = 5.74 4+ 6.58 = 12.32
Anchor #7:

x; =13.86 + 2.73 = 16.58

y; = ABS(5.74 — 6.58) = 0.84
Anchor #8:

xg = 5.74 + 2.73 = 8.47

yg = 13.86 — 6.58 = 7.28

n
Z(kit ‘xf + ki yE)
1

= 28274.33[3.012 + 7.282] + 18654.74[11.132 + 0.842]
+ 8434.93[11.13% + 12.322] + 4400.96[3.01% + 20.442]
+ 3458.11[8.472% + 20.442] + 4400.96[16.582 + 12.322]
+ 8434.93[16.58% + 0.842] + 18654.74[8.47% + 7.28?]
= 16505624.15
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Calculations example of Fox and Foyi
Anchor #1:

28274.33x3.01

F>,1 = 290.891x 1650562415 = 3.63 kip «
28274.33x7.28 ]
Fay1 = 290.891x ——= o ——=1.5kip 1
Anchor #2:
18654.74x11.13 ]
F5yo = 290.891x 1650562415 = 0.28 kip —
18654.74x0.84
Fyy7 = 290.891x =15kip1

16505624.15
Summary of calculations

Anchor#  Fa Fayi

3.63— 1501
028— 3.667
1.83— 1.651
1.59— 0231
125 0.52]
0.96— 1.29]
0.12—> 247]
239 2.78]

= 0 0

coO~NOOT A~ WNPE

8. Group Moment Induced from the Shear forces on Anchors due to Direct Shear
Loading and Torsion

Fixi = Fixi & Fixi
Ftyi:FZyii_FZyi

Anchor # Fxi Fyi Faxi Fayi Fixi Fuyi
1 0.22— 0.2217 3.63« 1.501 340 1.73%1
2 0.15— 0.157 0.28— 3.661 042— 3811
3 0.07— 0.071 1.83— 1.657 1.90— 1.727
4 0.03— 0.031 1.59— 0.237 1.62— 0.277
5 0.03— 0.031 1.25— 0.52] 1.27— 0.49]
6 0.03— 0.031 0.96— 1.29] 0.99— 1.25]
7 0.07— 0.07t 0.12— 247] 0.19— 2.40]
8 0.15— 0.157 239« 2.78] 224« 2.64|

n
h;
+ve directions _'@(Mcroup)lx = Z Flyi 71 (3-52)
i=1
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+ve directions — @ (MGroup)ly = {‘=1le1-% (3-53)

Anchor#  h-in *Fiyi *Fyi  **Myi  **Myi

1 1 -3.40 1.73 086 -1.70
2 1.3844 0.42 381 264 0.29
3 23123  1.90 172 199 219
4 3.2403 1.62 027 044 262
5 3.6247 127 -049 -0.89 231
6
7
8

3.2403 0.99 -125 -203 1.60
2.3123  0.19 -240 277 0.22
5.74 -2.24 -2.64 -1.82 -1.55
= -159 5,99
*The (-) and (+) signs represent the directions of the shear forces. The consideration of those signs was
adopted because the summation of moments would be performed algebraically.
**Moments are applied at the anchor section below the leveling nuts. The sign (- or +) shown at the

summation cell is ignored, and the true moment direction will be determined according to the assumed
(+ve) moment directions, as demonstrated in the figures below.

4
3 3.2403,.Li S
il2.3123~ z il3'62“g’
X il32403~

2
1.3844"1-\9
R
1
@1r 8 EJ2'3123”
13844
S B
2197 .~ 044 A
_, 7199 1 Lo 089 Gi
0.298 T 599 % >
2 6%4 P 1.89_ /" et B 03
— 2 S\“Z 0.2\23
n'sl 1 *®] g
86 -+ 1.55 2.77
1.82
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+M.

5.99 k-in M,

——— Concrete Surface
4e °

3e °6
1.59 k-in

2e o7

le e 8
y

L.

(Mmup)lx = 1.59 kip — in —»

(MGroup)ly = 5.99 kip — in %

9. Axial Forces on the Anchor Bolts due to Group Bending Moment

Ny = (MGroup)th (3-73)
1= at 1
Kgi x;

Ny; = (M(;mup)tyﬁ (3-74)
1= at l

(MGToup)lx = 1.59 kip — in —»
(MGToup)ly =599 kip —in %

given: (Maroup)2x = 240.75 Kip-in «
given: (Maroup)2y = 240.75 Kip-in *
(Mamup)tx = 240.75 — 1.59 = 239.16 kip — in «

(MGToup)ty = 240.75 + 5.99 = 246.75 kip — in%
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/

P

R

Moment about
x-direction

It can be inferred from the above figure that anchors: 1, 2, 7, and 8 are having tension;
whereas anchors from 3 to 6 are having compression.

y

\\

\\

— e
Y

——]

Moment about
y-direction

It can be inferred from the above figure that anchors from 1 to 4 are having tension;
whereas anchors from 5 to 8 are having compression.
Calculations of x; and yi, with respect to the C.R. due to axial
Anchor #1:

x; =5.74—1.79 = 3.95

y, = 13.86 — 4.32 = 9.54

Anchor #2:

x, = 13.86 —1.79 = 12.07

y, =574 —-432 =142

Anchor #3:

x; =13.86 —1.79 = 12.07

y; = 5.74 + 4.32 = 10.06

Anchor #4:
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x4 =5.74—-1.79 =3.95
v, = 13.86 +4.32 = 18.18
Anchor #5:

x5 =574+ 1.79 =7.53
ys = 13.86 +4.317 = 18.18
Anchor #6:

X¢ = 13.86 + 1.79 = 15.65
V¢ = 5.74 + 4.32 = 10.06
Anchor #7:

x;, =13.86 + 1.79 = 15.65
vy, =5.74 —4.317 = 1.42
Anchor #8:

xg =574+ 1.79 =7.53
yg = 13.86 —4.317 = 9.54

Anchor # Kai Xi Xi? Kai Xi Kai Xi? N2i
1 91106.2 3.95 15.62 360063.36 1423016.7 534 T
2 65809.1 12.07 145.69 794318.31 9587444.7 058T
3 39400.7 12.07 145.69 475567.30 5740110.9 244 C
4 28116.6 3.95 15.62 111120.38 439162.0 3.14C
5 25134.8 7.53 56.68 189226.79 1424588.5 281C
6 28116.6 15.65 244.81 439922.61 6883192.7 1.74C
7 39400.7 15.65 24481 616477.64 9645638.2 034T
8 65809.1 7.53 56.68 49544231 37299233 386T
Y= 38873076.8 0
Anchor # Kai Yi yi2 Kai Vi Kai Yi? N3i
1 91106.2 9.54 91.03 869260.14 8293763.8 2.29T
2 65809.1 142 2.03 93664.57 133310.5 504T
3 39400.7 10.06 101.15 396265.39 3985369.5 3.02T
4 28116.6 18.18 330.34 511025.33 9288000.0 O0.71T
5 25134.8 18.18 330.34 456831.01 8303006.1 1.20C
6 28116.6 10.06 101.15 282777.66 2843986.7 2.79C
7 39400.7 1.42 2.03 56078.03 79814.5 391C
8 65809.1 9.54 91.03 627896.66 5990872.4 3.14C
Y= 38918123.5 0
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Summary of total axial forces

Anchor # N2i NET Nii
1 534T 229T 763T
2 058T 5.04T 562T
3 244C 3.02T 058T
4 3.14C 0.71T 244C
5 281C 120C 4.01cC
6 1.74C 279C 453C
7 034T 391C 357C
8 386T 3.14C 0.71T
10. Summary of Forces
Anchor # Fii Fyi Nii
1 3.40«— 1.731 763T
2 0.42— 3.811 562T
3 1.90— 1.721 058T
4 1.62— 0277 244C
5 1.27— 0.49| 401C
6 0.99— 125/ 453C
7 0.19— 2.40| 357C
8 224— 264) 0717
11. Normal Stresses
N, M,r M,
Oni = i f i x; T Y;
Ft ;" h.
Mxi yé
thi ‘h
Myl- >
r=1in
| =0.7854 in*
A =3.1416 in?
Anchor#  h-in Fixi Fyi Nii Myi Myi
1 1 340 173 763T 086 1.70
2 1.3844 042 381 562T 264 0.29
3 23123 190 172 058T 199 219
4 3.2403 162 027 244C 044 262
5 3.6247 127 049 4.01C 089 231
6 3.2403 099 125 453C 203 160
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Anchor#  h-in Fxi  Fuyi Nti Myxi My
7 23123 019 240 357C 277 0.22
8 574 224 264 071T 182 155
Anchor # Myi-m Myi'r Ne ONi
I A
1 1.10 217 243T 569T
2 3.36 037 179T 552T
3 2.53 279 019T 55171
4 0.55 334 0.78C 467C
5 1.13 294 128C 534cC
6 2.58 204 144C 6.07C
7 3.53 028 114C 495C
8 2.32 198 023T 453T
12. Shear Stresses
16
=37 Fgi
2
Fp = \/(thi)z + (Ftyi)
d=2in
Anchor# Fui  Fui Fri Ti
1 340 173 382 162
2 042 381 383 1.63
3 190 172 256 1.09
4 1.62 0.27 164 0.70
5 127 049 136 058
6 099 125 160 0.68
7 0.19 240 241 1.02
8 224 264 346 147
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Design with 2013 Supports Specifications

1. Properties

fy = 55 ksi

E = 29000 ksi

1 [Poisson’s ratio] = 0.3
G =11153.85 ksi
d=2in

A =3.1416 in?

| =0.7854 in*
S$=0.7854 in®

2. Loads

Vx =0.75 kip —

Vy=0.75kip 1

T[Pure torsion] = 288 kip — in ™~
(Mx)Group = 240.75 Kip-in «
(My)roup = 240.75 Kip-in &

3. Layout of Anchor Bolts

Anchor # X y h-in

-5.74  -13.86 1

-13.86  -5.74  1.3844
-13.86 5.74  2.3123
-5.74 13.86  3.2403
5.74 13.86  3.6247
13.86 574  3.2403

OO, WN -

99



Anchor # X y h-in
7 13.86 -5.74  2.3123
8 5.74 -13.86  1.3844

4. Shear Forces on the Anchor Bolts due to Direct Shear Loading

given: Vx = 0.75 kip —

given: Vy=0.75 kip 1

Vit
V.
Viy:Lt
n

n=38
Anchor # Vix Viy

1 0.09— 0.091
2 0.09— 0.091
3 0.09— 0.091
4 0.09— 0.091
5 0.09— 0.091
6 0.09— 0.091
7 0.09— 0.091
8 0.09— 0.091

5. Shear Forces due to Pure Torsion and the Induced Torsion from Direct Shear

Loading
B Td
UYL (4D
given: T = 288 kip —in ™~
Anchor # X y d-in X2 y? Fri
1 574 -1386 15 32.95 19210 24
2 -13.86 -5.74 15 192.10 32.95 2.4
3 -13.86 5.74 15 192.10 32.95 2.4
4 -5.74 13.86 15 32.95 192.10 24
5 574 13.86 15 32.95 19210 24
6 13.86 5.74 15 192.10 32.95 2.4
7 13.86 -5.74 15 192.10 32.95 2.4
8 574 -1386 15 32.95 192.10 24
¥ = 900.1888 900.1888
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Fpyi =

Fg; coso;

FRyi = FRi SinHi

Anchor# *6; cosé@ sin6  Frx Fryi
1 225 092 038 222« 0.927
2 675 038 092 092 2227
3 675 038 092 092— 2.227
4 225 092 038 222— 0.9271
5 225 092 038 222— 0.92]
6 675 038 092 092— 2.22]
7 675 038 092 092« 222]|
8 225 092 038 222« 0.92]
= 0 0
*0 = tan"(x/y)
1
4 ¢
94:??\ fl%s
. 0
2 288 k-jn 6
9;:2\‘\ TP
i S e i :+: _______ —x
2 o //!\\ h 539
mz AR 7
/ | \
lﬁq 68
1
i
Torsion
Total shear forces
AnChOI’ # in Vyi Fin FRyi thi Ftyi
1 0.09— 0.091t 2.22« 0921 2.12« 1.01%
2 0.09— 0.091t 092« 2221 0.82<— 2311
3 0.09— 0.09t 0.92— 2221 1.01— 2317
4 0.09— 0.091t 2.22— 0921t 231— 1.011
5 0.09— 0.09t 2.22— 092] 231— 0.82]
6 0.09— 0.09t 092— 222| 101— 212]
7 0.09— 0.097 0.92« 222 0.82« 2.12|
8 0.09— 0.097 222« 092| 2.12« 0.82]

6. Axial Forces on the Anchor Bolts due to Group Bending Moment

(M Group)

i

3-67
tx Zl 13’1 ( )

( Group)ty Z (3-68)

lll
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given: (Meroup)n = 240.75 Kip-in «
given: (Marouwp)y = 240.75 kip-in #

Vi

Xi

2 2 . .

Anchor# X y X y noy7 yn o7 N2i Nsi
1 574 1386 3295 19205 0.00638 0.0154 3.71T 154T
2 13.86 574 192.05 3295 0.01540 0.00638 154T 3.71T
3 13.86 574 192.05 3295 0.01540 0.00638 154C 3.71T
4 574 1386 3295 19205 0.00638 0.0154 3.71C 154T
5 574 1386 3295 19205 0.00638 0.0154 3.71C 154C
6 13.86 5.74 19205 3295 0.01540 0.00638 154C 3.71C
7 13.86 5.74 192.05 3295 0.01540 0.00638 154T 3.71C
8 574 13.86 3295 192.05 0.00638 0.0154 3.71T 154C

> = 1590.44 1590.44 r= 0 0

49/ 95 />

j 3. Compr¢s51on 6 )

My
. 2e n
\ Tension
le e 8
Moment about
x-direction
Aﬁly
4e |[/¢
B
[ 3¢ 2 |7/
g (8~
2e B =&
1w VA
Moment about
y-direction
Total axial forces
Anchor # Nai Nai Nti
1 3.71T 154 T 524T
2 154 T 3.71 T 524T
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3 154C 371T 217°7
4 371C 1547 217C
5 3.71C 154 C 5.24C
6 154C 371C 524C
7 154T 3.71C 2.17C
8 371 T 154C 2177
Y= 0 0 0
6. Summary of Forces
Anchor#  Fri Fryi Nii
1 212« 1011 5247
2 0.82— 2311 524T
3 1.01— 2311 217T
4 2.31— 1.011 217C
5 2.31— 082 5.24C
6 1.01—» 212 524C
7 0.82— 212] 217C
8 2,12« 0.82] 2177
7. Normal Stresses
Ny Myy-r My, -
Ft Pt h
Mxi y;
thi ‘h
Myl- >
r=1in
| =0.7854 in*
A =3.1416 in?
Anchor#  h-in Fui  Fuyi Nti Myxi My
1 1 212 101 524T 106 0.1
2 1.3844 082 231 524T 057 160
3 23123 101 231 217T 117 2.67
4 3.2403 231 101 217C 374 164
5 3.6247 231 082 524C 419 149
6 3.2403 101 212 524C 164 3.44
7 2.3123 082 212 217C 095 2.46
8 574 212 082 217T 147 0.57
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Anchor # M 'T Myi-r Nu ONi
i A
1 0.64 1.35 167T 367T
2 2.04 0.73 167T 443T
3 3.40 149 069T 558T
4 2.09 477 069C 755C
5 1.90 533 167C 890C
6 4.38 209 167C 8.14C
7 3.13 1.21 0.69C 5.03C
8 0.73 187 069T 3.29T
8. Shear Stresses
16
=37 Fgi
2
Fp; = \/(thi)z + (Fryi)
d=2in
Anchor# Fui Fyi  Fri Ti
1 212 101 235 0.998
2 0.82 231 245 1.041
3 1.01 231 252 1.071
4 231 101 252 1.071
5 231 0.82 245 1.041
6 1.01 212 2.35 0.998
7 0.82 212 2.28 0.967
8 2.12 0.82 2.28 0.967
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Summary of the Two Approaches

Anchor Analytical Equations | 2013 Supports Specifications

# ONi Ti ONi Ti

1 569T 1.62 367T 0.998
2 552T 1.63 443 T 1.041
3 551T 1.09 558 T 1.071
4 4.67C 0.70 755C 1.071
5 534C 0.58 8.90C 1.041
6 6.07C 0.68 8.14C 0.998
7 495C 1.02 5.03C 0.967
8 453 T 1.47 3.29T 0.967
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