

Project Information Form

Project Title	Field Validation of a Drive-By Bridge Inspection System with Wireless
	BWIM + NDE Devices
University	Georgia Institute of Technology, University of Alabama at Birmingham
Principal Investigator	Yang Wang, Nasim Uddin, Laurence J. Jacobs, Jin-Yeon Kim
PI Contact Information	Dr. Yang Wang
	School of Civil and Environmental Engineering
	Georgia Institute of Technology
	790 Atlantic Drive
	Atlanta, GA 30332-0355
	Phone: (404) 894-1851, FAX: (404) 894-2278
	Email: yang.wang@ce.gatech.edu
Funding Source(s) and	NCTSPM - \$210,000
Amounts Provided (by each	Georgia DOT - \$180,000
agency or organization)	Alabama DOT - \$100,000
Total Project Cost	\$490,000
Agency ID or Contract	DTRT12GUTC12
Number	NCTSPM 2013-010
Start and End Dates	November 1, 2013 - November 1, 2015
Brief Description of	The proposed system incorporates a next-generation high-fidelity
Research Project	portable wireless BWIM+NDE system (bridge weigh-in-motion and
	nondestructive evaluation system), and compatible wireless sensing
	devices aboard a heavy drive-by inspection vehicle. As the inspection
	vehicle drives through a bridge, both wireless sensors aboard the vehicle
	and wireless BWIM+NDE devices on the bridge simultaneously trigger on.
	This wireless sensing system measures both truck excitation and the
	corresponding bridge vibration and ultrasonic characteristics, providing
	an unprecedented mix of heterogeneous data set for bridge safety
	management and maintenance planning.
Describe Implementation of	Experimental validation of the proposed wireless system will be
Research Outcomes (or why	performed both in the lab and in the field. The final deliverables of this
not implemented)	project are: a) A drive-by bridge inspection system consisting of portable
	wireless BWIM+NDE devices is to be developed for providing automated

(Attach Any Photos)	and convenient bridge safety evaluation; b) Performance of the system
	should be demonstrated by field validation, correlating vibration data of
	both the bridge and the drive-by inspection vehicle, as well as ultrasonic
	characterization at potential crack locations.
Impacts/Benefits of	The wireless BWIM+NDE device provides an overarching tool that offers
Implementation (actual, not	vibration measurements for both the bridge and vehicle, as well as the
anticipated)	ultrasonic characterization of hot-spot areas. BWIM and vehicle-bridge
	dynamic interaction studies, when correlated and strengthened with
	ultrasonic NDE data, offers high-fidelity evaluation of bridge safety.
Web Links	
_	
Reports	
 Project website 	