
  

1 

Abstract—This research investigates a substructure model updating approach for large-scale structures. The approach requires 

instrumentation in only part of a large structure (i.e. a substructure), and is capable of updating the model parameters for the 

substructure. Prior to updating, the entire structural model is divided into the substructure (currently being instrumented and to be 

updated) and the residual structure. Craig-Bampton transform is adopted to condense the residual structure using a limited number 

of dominant mode shapes, while the substructure remains at high resolution. To update the condensed structural model, physical 

parameters in the substructure and modal parameters of the residual structure are chosen as optimization variables; minimization of 

the modal dynamic residual is chosen as the optimization objective. A space frame structure, simulating a pedestrian bridge on 

Georgia Tech campus, is adopted to validate the proposed approach. About a quarter of the bridge model is selected as the 

substructure to be instrumented and updated. For comparison, a conventional model updating approach, which minimizes modal 

property differences, is also adopted to update the substructure model. The results show that the proposed substructure updating 

approach, which minimizes  modal dynamic residual, gives better accuracy compared to the conventional approach.  

 

I. INTRODUCTION 

Though significant advances have been achieved in finite element (FE) modeling of engineering structures, differences 

usually exist between predictions of an FE model and experimental measurements from the actual structure.  The discrepancies 

are mainly caused by complexity of the actual structure and limitations in FE modeling. For higher simulation accuracy, it is 

essential to update the finite element model based on experimental measurements on the actual structure. Numerous FE model 

updating algorithms have been developed and practically applied in the past few decades [1]. Most algorithms can be 

categorized into two groups, i.e. frequency-domain approaches and time-domain approaches. Frequency-domain approaches 

update an FE model using frequency-domain structural characteristics extracted from experimental measurements, such as 

vibration modes [2, 3]. On the other hand, time-domain approaches directly utilize measured time histories for model updating 

[4, 5]. Nevertheless, most of the existing algorithms operate on an entire structural model with very large amount of degrees of 

freedom (DOFs), thus they may suffer significant computational challenges and convergence problem. 

In order to address the difficulties, some research activities have been devoted to substructure model updating, which 

operates on part of a large structure with relatively small number of DOFs. Among frequency-domain approaches, Link adopts 

Craig-Bampton transform for substructure modeling, and updates the substructure model by minimizing difference between 

simulated and experimental modal properties [6, 7]. In [8], interface force vectors are estimated using multiple sets of 

measurement; the difference between multiple estimations is minimized with genetic algorithms for substructure model 

updating. Other researchers adopt frequency spectra for substructure identification, by minimizing difference between simulated 

and experimental acceleration spectra in certain frequency range [9, 10]. Among time-domain approaches, the substructure 

model is always built by considering interface coupling effects as known/unknown external load. For example, some algorithms 

only update the physical parameters inside the substructure by assuming interface dynamic force is known or can be 

pre-estimated [11-13].  Recently, the sequential nonlinear least square estimation (SNLSE) method has been explored for 

substructure model updating [14]. The unknown interface coupling terms are treated as unknown forces, and updated in each 

time step sequentially with state variables and system parameters. Furthermore, Yuen and Katafygiotis present a substructure 

identification procedure using Bayesian theorem, without requiring interface measurements or excitation measurements [15]. 

This research investigates substructure updating using frequency domain data. The entire structural model is divided into the 

substructure (currently being instrumented and to be updated) and the residual structure. Craig-Bampton transform is adopted to 

condense the residual structure using a limited number of dominant mode shapes, while the substructure model remains at high 

resolution. To update the condensed structural model, physical parameters in the substructure and modal parameters of the 

residual structure are chosen as optimization variables, and minimization of the modal dynamic residual is chosen as the 

optimization objective. An iterative linearization procedure is adopted for efficiently solving the optimization problem [3, 16, 

17]. The approach is previously validated with a few 2D structural models. This research attempts to validate the approach with 

a more complicated 3D frame structure.  
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The rest of the paper is organized as follows. Section II presents the formulation of substructure modeling and model 

updating through modal dynamic residual approach. Section III describes numerical validations using a space frame structure. 

The performance of the proposed approach is compared with a conventional updating procedure that minimizes experimental 

and simulated modal property differences. Finally, a summary and discussion are provided. 

 

II. SUBSTRUCTURE MODELING AND UPDATING 

This section presents the basic formulation for substructure updating. Section A describes substructure modeling strategy 

following Craig-Bampton transform. Section B describes substructure model updating through minimization of  modal dynamic 

residual.  

 

A. Substructure modeling 

Figure 1 illustrates the substructure modeling strategy. Subscripts s, i, and r are used to denote DOFs associated with the 

substructure being analyzed, the interface nodes, and the residual structure, respectively. The block-bidiagonal structural 

stiffness and mass matrices, K and M, can be assembled using original DOFs  
T
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Here KS and MS denote entries of the stiffness and mass matrices corresponding to  the substructure; KR and MR denote 

entries corresponding to the residual structure; 
S

iiK  and 
S

iiM  denote the entries at the interface DOFs and contributed by the 

substructure; 
R

iiK  and 
R

iiM  denote entries at the interface DOFs and contributed by the residual structure. For simplicity, the 

formulation is provided neglecting damping, although the substructure updating approach can consider damping upon some 

modification.  

The dynamic behavior of the residual structure can be approximated using Craig-Bampton formulation [6]. The DOFs of the 

residual structure, rn

r x , are approximated by a linear combination using interface DOFs, in

i x , and modal coordinates 

of the residual structure, qn

r q . 

r i r r x Tx Φ q  (3) 

Here 1

rr ri

 T K K  is the Guyan static condensation matrix; 
1,...,

qr n
 
 

Φ φ φ  represents the mode shapes of the residual 

structure with interface DOFs fixed. The eigenvalue equation providing the mode shapes, 
jφ  (j=1, ..., nq), and modal 

frequencies, 
,r j ,  can be written as 

 2

, 0,        1,...,r j rr rr j qj n   M K φ  (4) 

Although the size of the residual structure may be large, the number of modal coordinates, nq, can be chosen as relatively 

small to reflect the first few dominant mode shapes only (i.e. nq << nr). The coordinate transformation is rewritten in vector form 

as: 

Substructure DOFs xs

Residual DOFs xr

Interface DOFs xi

Substructure

 

Figure 1. Illustration of substructure modeling strategy. 
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Suppose 
RK  and 

RM  denote the new stiffness and mass matrices of the residual structure after transformation:  

T

R RK Γ K Γ                   T

R RM Γ M Γ  (6) 

Link  described a model updating method for both the substructure and the residual structure [7]. The substructure model is 

updated as 
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where 
0SK and 

0SM are the stiffness and mass matrices of the substructure and used as initial starting point in the model 

updating; j and j  correspond to physical system parameters to be updated, such as elastic modulus and density of each 

substructure element; n and n represent the total number of  corresponding parameters to be updated; 
0,S jK and 

0,S jM  are 

constant matrices determined by the type and location of these parameters. Subscript “0” will be used hereinafter to denote 

variables associated with the initial structural model, which serves as the starting point for model updating. 

The matrices of the condensed residual structural model, 
RK  and 

RM  in Eq.(6), each contains (ni + nq) × (ni + nq) number 

of entries. Assuming that physical changes in the residual structure do not significantly alter the generalized eigenvectors of 
RK  

and 
RM , only  (ni + nq) number of modal parameters are selected as updating parameters for each condensed matrix of the 

residual structural model : 
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where j and j are the modal parameters to be updated; 
0RK and 

0RM are the initial stiffness and mass matrices of the 

condensed residual structure model; 
0,R jK and 

0,R jM  represent the constant correction matrices formulated using  modal 

back-transform: 
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0,R jφ

 
are the j-th generalized eigenvalue and eigenvector of the initial transformed residual structural matrices: 

T
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Using all model matrices to be updated, i.e. Eq. (7) for substructure and Eq. (8) for residual structure, the condensed entire 

structural model with reduced DOFs,  
T

s i rx x q , can be updated with variables αj, βj, ζj and ηj. For brevity, these variables 

will be referred to in vector form as nα , 
nβ , i qn n

ζ and i qn n
η . 
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where , jS , , jS , , jS and , jS  represent the constant sensitivity matrices corresponding to variables αj,  βj,  ζj and ηj, 

respectively.  



  

B. Substructure model updating through minimization of modal dynamic residual 

To update the substructure model, a modal dynamic residual approach is proposed in this study. The model updating 

approach attempts to minimize modal dynamic residual of the generalized eigenvalue equation. 
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where  denotes any vector norm; nm  denotes the number of  measured modes from experiments; j denotes the j-th modal 

frequency extracted from experimental data; 
m, jψ denotes the entries in the j-th mode shape that correspond to measured 

(instrumented) DOFs; 
u, jψ  corresponds to unmeasured DOFs; α,  β,  ζ and η are the system parameters to be updated (see Eq. 

(12) and (13)); 
Lα , 

Lβ , 
Lζ and 

Lη  denote the lower bounds for vectors α, β, ζ and η, respectively; 
Uα , 

Uβ , 
Uζ and 

Uη  denote 

the upper bounds for vectors α, β, ζ and η, respectively. Note that the sign “≤” in Eq. (14) is overloaded to represent 

element-wise inequality.  

In summary, 
j and  

m,jψ  are extracted using experimental data from the sensors deployed on the substructure and interface 

DOFs at high density, and thus, are constant in the optimization problem. The optimization variables are α,  β,  ζ, η and 
uψ . Eq. 

(14) leads to a complex nonlinear optimization problem that is generally difficult to solve. However, if mode shapes at 

unmeasured DOFs, 
uψ , were known, Eq. (14) becomes a convex optimization problem[17, 18]. The optimization variables are 

system parameters (α,  β,  ζ and η), and the problem can be efficiently solved. Likewise, if system parameters (α,  β,  ζ and η) 

were known, Eq. (14) also becomes a convex optimization problem with variable 
uψ . Therefore, an iterative linearization 

procedure for efficiently solving the optimization problem is adopted in this study, similar to [3].  

Figure 2 shows the pseudo code of the procedure. Each iteration step involves two operations, modal expansion and 

parameter updating. At each iteration, the first operation is essentially modal expansion for unmeasured DOFs 
uψ , where 

system parameters (α,  β,  ζ and η) are from initial guess (starting values) for the first iteration step,  or for later steps are from the 

updating results in the previous iteration. These parameters are thus constant in the first operation. The optimization problem 

over variables 
uψ  can be conveniently coded and efficiently solved using off-the-shelf solvers such as CVX [19]. The second 

operation at each iteration is the updating of model parameters (α,  β,  ζ and η)  using the expanded complete mode shapes from 

the first operation. Thus, 
uψ is held as constant in the second operation. Again, off-the-shelf solvers such as CVX can be 

adopted to efficiently solve the optimization problem over variables (α,  β,  ζ and η). Note that when Euclidean norm (2-norm) is 

adopted, the optimization problem without constraints is equivalent to a least square form for each operation and the detailed 

formulation can be found in [20]. 

 

III. VALIDATION BY NUMERICAL SIMULATION OF A SPACE FRAME BRIDGE  

To validate the proposed approach for substructure model updating, numerical model of a space frame bridge, which 

simulates a pedestrian bridge on Georgia Tech campus, is constructed. Figure 3 shows the space frame model containing 46 

nodes,  each node with six DOFs. Although mainly a frame structure, the segment cross bracings in top plane and two side planes 

are truss members. Transverse and vertical springs (ky and kz) are allocated at both ends of the bridge to simulate non-ideal 

boundary conditions. In this study, it is assumed to have accurate information on structural mass; structural stiffness parameters 

are to be updated. TABLE I summarizes the structural stiffness parameters of the model. The parameters are divided into three 

categories. The first category contains six parameters (starting from top in the table), which are elastic moduli of the frame and 

truss (diagonal bracings in top plane) members along the entire length of the bridge. The second category contains ten 

parameters, which are the elastic moduli of truss members (diagonal bracings in two side planes) for different segments. The 

 

Figure 2. Pseudo code of the iterative linearization procedure. 

 

 start with α,  β,  ζ and η = 0 (meaning M and K start with M0 and K0 ) ; 
 REPEAT { 

            (i)  hold α,  β,  ζ and η  as constant and minimize over variable uψ ; 

           (ii)  hold uψ as constant and minimize over variables α,  β,  ζ and η  ;  

 } UNTIL convergence ;  

 



  

third category contains stiffness parameters of the four types  of support springs. TABLE I provides initial (nominal) values for 

all parameters, as starting point for model updating. The table also lists actual values, which ideally are to be identified. The 

relative changes from initial to actual values, to be identified,  are also listed.  

A substructure containing first three segments from left is selected for model updating (Figure 3). The selected substructure 

contains 10 substructure nodes and 4 interface nodes. Since each node has six DOFs and the longitudinal DOFs of the two 

support nodes are constrained, the substructure DOF vector is 58 1

s

x  and the interface DOF vector is 24 1

i

x . For 

practicality, it is assumed only translational DOFs of the substructure and interface nodes are instrumented with accelerometers 

for capturing substructure vibration modes; rotational DOFs are not measured. As described by formulation in Section II, no 

measurement is required on the residual structure. For model condensation, dynamic response of the residual structure is 

approximated using twenty modal coordinates, i.e. nq = 20 in Eq.(3). As a result, the entire structural model is condensed to 

ns+ni+nq=102 DOFs (reduced from 274 DOFs in the original structure).  

Since accurate structural mass matrix is assumed to be known, mass parameters β (Eq.(7)) is not among the updating 

parameters. Figure 4 shows the detailed view of the substructure containing the first three segments. The substructure stiffness 

parameters α (being updated) include the five elastic moduli of the frame members (E1~E5), the elastic moduli of top bracing 

truss members (E6), the elastic moduli of side-bracing truss members at the 2
nd

 and 3
rd

 segments (ES2 and ES3), and the spring 

stiffness values at the left support (ky1 and kz1). On the other hand, the residual structure is updated through modal parameters of 

the residual structure with free interface (ζ2, ζ 3, ..., ζ 44 and η1, η2, ..., η44). Note that ni+nq = 44 and that modal parameter ζ1 is not 

included. The reason is the first resonance frequency of the residual structure with free interface is zero (corresponding to 

free-body movement). As a result, the first modal correction matrix 0,1RK in Eq.(9) is a zero matrix, and so is the corresponding 

sensitivity matrix ,1S . Using modal frequencies and substructure mode shapes ( j  and 
m, jψ ) as "experimental data", the 

proposed modal dynamic residual approach is applied for substructure model updating. For each approach, the updating is 

 

Figure 3. Substructure modeling of a space frame bridge. 

TABLE I. STRUCTURAL STIFFNESS PARAMETERS 

Updating parameters Initial 
value 

Actual 
value 

Change 

(%) 

Elastic moduli of 
members along the 

bridge (kips/in2) 

Frame members 

E1  Longitudinal top chord  29,000 30,450 5 

E2  Longitudinal bottom chord 29,000 30,450 5 

E3  Vertical members 29,000 27,550 -5 

E4  Transverse top chord   29,000 30,450 5 

E5  Transverse & diagonal bottom chord  29,000 30,450 5 

Truss members E6  Diagonal bracings in top plane  29,000 27,550 -5 

Elastic moduli of  
side-plane diagonal 

bracings (truss 

members) for each 
segment (kips/in2) 

ES2  2nd segment  29,000 26,100 -10 

ES3  3rd segment  29,000 26,100 -10 

ES4  4th segment  29,000 26,100 -10 

ES5   5th segment   29,000 27,550 -5 

ES6  6th segment  29,000 27,550 -5 

ES7  7th segment  29,000 27,550 -5 

ES8  8th segment  29,000 24,650 -15 

ES9  9th segment  29,000 26,100 -10 

ES10  10th segment  29,000 27,550 -5 

ES11  11th segment  29,000 27,550 -5 

Support springs 
(kips/in) 

ky1  Left transverse  200 140 -30 

kz1  Left vertical  500 800 60 

ky2  Right transverse  200 140 -30 

kz2  Right vertical  500 800 60 

 



  

performed assuming different numbers of measured modes are available (i.e. modes corresponding to the lowest three to six 

natural frequencies). 

TABLE II summarizes the updating results using the proposed modal dynamic residual approach for substructure model 

updating. The results are presented in terms of relative change percentages from initial values. For every available number of 

modes, most of the updated parameter changes are close to the ideal percentages listed in TABLE I. The updating results for E4,  

the elastic moduli of the transverse frame members in top plane are between -4.03% (with 6 modes) and -5.51% (with 3 modes). 

These results are most different from the actual/ideal change of +5%. The suspected reason is this parameter is less sensitive to 

translational DOFs. Another study shows if any rational DOF is measured, this parameter can be successfully updated. For clear 

demonstration of updating accuracy, Figure 5 plots the relative errors of the updating results, i.e. relative difference of updated 

values from the actual parameter values, for different number of available modes. The figure shows that except for E4, the 

updating results accurately identify all other substructure stiffness parameters. In addition, the updating accuracy generally 

improves when more measured modes are available.  

Although mostly small, updating errors do exist in this numerical example. The errors are mainly caused by the 

 

Figure 4. Detailed view of the substructure showing stiffness parameters to be updated. 

 

 

TABLE II. UPDATED PARAMETER CHANGES (%) FOR SUBSTRUCTURE ELEMENTS BY MINIMIZATION OF MODAL DYNAMIC RESIDUAL 

Number of 

available 

modes 

Frame member Truss member Spring 

Longitudina

l top (E1) 

Longitudinal 

bottom (E2) 

Vertical 

(E3) 

Transverse 

top (E4) 

Transverse 

bottom (E5) 

Top 

(E6) 
Side in 2

nd
 

segment (ES2) 

Side in 3
rd

 

segment (ES3) 
ky1 kz1 

3 modes 3.41 2.94 -6.35 -5.51 2.90 -6.60 -11.48 -12.00 -31.42 57.63 

4 modes 4.81 4.23 -5.03 -4.38 4.21 -5.23 -10.33 -10.76 -30.55 59.83 

5 modes 4.93 4.36 -5.02 -4.40 4.33 -5.82 -10.20 -10.98 -30.47 59.92 

6 modes 4.96 4.38 -4.97 -4.03 4.36 -6.34 -10.19 -12.39 -30.42 59.98 

 

Figure 5. Relative errors of the updated parameters by minimization of modal dynamic residual 
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approximations made in the formulation for substructure model updating. First, the Craig-Bampton transform used in model 

condensation (Eq. (3)) adopts the static condensation matrix as the transformation matrix from interface DOFs to residual DOFs, 

which neglects interface dynamic contribution. Second, the Craig-Bampton transform uses only a few dominant modes 

describing dynamic behavior of the residual structure; higher-frequency modes are neglected. Third, while updating modal 

parameters for the residual structure, it is assumed that potential physical parameter changes in the residual structure do not 

significantly alter the generalized eigenvectors of the residual structural matrices (Eq.(8)). Nevertheless, the overall substructure 

updating performance through minimization of modal dynamic residual is reasonably accurate.  

For comparison, substructure model updating is also performed using a conventional approach that minimizes experimental 

and simulated modal property differences [7]. The conventional model updating formulation aims to minimize the difference 

between experimental and simulated natural frequencies, as well as the difference between experimental and simulated mode 

shapes of the substructure.   

m
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1 MAC
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where
FE

j and j represent the j-th simulated (from the condensed model in Eq. (9) and (10)) and experimentally extracted 

frequencies, respectively; MACj represents the modal assurance criterion evaluating the difference between the j-th simulated 

and experimental mode shapes. Note that mode shape entries only corresponding to measured DOFs are compared (i.e. between 
FE

m, jψ  and m, jψ ). A nonlinear least-square optimization solver, ‘lsqnonlin’ in MATLAB toolbox [21], is adopted to 

numerically solve the optimization problem minimizing modal property differences. The optimization solver seeks a minimum 

through Levenberg-Marquardt algorithm, which adopts a search direction interpolated between the Gauss-Newton direction and 

the steepest descent direction [22].  

TABLE III summarizes the updating results using the conventional approach minimizing modal property differences. Many 

of the updated/identified parameter changes are apparently different from the correct/ideal values listed in TABLE I. For clear 

demonstration of updating accuracy, Figure 6 plots the relative errors of the updating results. The figure shows that the updating 

results from conventional approach have much larger errors than the results from the proposed modal dynamic residual approach 

(Figure 5), particularly for support spring stiffness ky1 and kz1. The conventional approach minimizing modal property 

differences, when used for substructure model updating, cannot achieve a reasonable accuracy in this example. The main reason 

is that the objective function using modal property differences is not sensitive to minor changes in structural parameters. 

Moreover, the objective function using modal property differences is highly non-convex to structural parameters, so the 

optimization algorithm easily gets stuck at a local minimum.   

 

TABLE III. UPDATED PARAMETER CHANGES (%) FOR SUBSTRUCTURE ELEMENTS BY MINIMIZATION OF MODAL PROPERTY DIFFERENCES 

Number of 

available 

modes 

Frame member Truss member Spring 

Longitudina

l top (E1) 

Longitudinal 

bottom (E2) 

Vertical 

(E3) 

Transverse 

top (E4) 

Transverse 

bottom (E5) 

Top 

(E6) 
Side in 2

nd 

segment (ES2) 

Side in 3
rd

 

segment (ES3) 
ky1 kz1 

3 modes 2.65 6.19 -3.88 3.51 4.34 -4.53 -9.05 -7.42 -0.12 -0.13 

4 modes 3.05 6.76 -5.34 5.99 2.09 -6.96 -9.05 -10.19 -0.87 -0.19 

5 modes 5.35 13.53 -0.09 0.66 1.9 -0.58 -4.09 -3.75 -0.29 -0.01 

6 modes 7.71 17.92 -0.73 -1.02 8.04 4.26 2.42 -6.24 -0.62 0.03 

 

 

Figure 6. Relative errors of the updated parameters by minimization of modal property differences 
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IV. SUMMARY & CONCLUSION  

This paper studies substructure model updating through minimization of modal dynamic residual. The entire structural 

model is divided into the substructure (currently being instrumented and to be updated) and the residual structure. 

Craig-Bampton transform is adopted to condense the residual structure using a limited number of dominant mode shapes, while 

the substructure remains at high resolution. To update the condensed structural model, physical parameters in the substructure 

and modal parameters of the residual structure are chosen as optimization variables; minimization of the modal dynamic residual 

is determined as the optimization objective. An iterative linearization procedure is adopted for efficiently solving the 

optimization problem.  

The presented substructure updating method is validated through a space frame bridge example. About a quarter of the 

bridge is selected as the substructure being instrumented and updated. The proposed approach accurately identifies most of the 

parameters for the selected substructure. For comparison, a conventional approach minimizing modal property differences is 

also applied, but cannot achieve reasonable updating results. Future research will continue to investigate the substructure model 

updating approach on more complicated structural models, through both simulations and experiments. 
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