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SUMMARY 

 Since the 1970s, an emission inspection test has been a requirement for major 

metropolitan areas that were designated non-attainment areas according to the Clean Air Act. 

Some of the most harmful pollutants being checked include carbon monoxide, hydrocarbons, and 

oxides of nitrogen. In Georgia, about ten percent of tested vehicles fail emission inspections. 

Even though the sheer number of failing vehicles may seem to be large (about 250,000 vehicles), 

all of the eligible vehicles have to be tested (about 2,500,000 vehicles). It seems to be a very 

inefficient way to identify failing vehicles. Reducing those inefficiencies is the focal point of this 

inquiry. This research creates a model that assigns a probability of failure to each individual 

vehicle. Based on the probability of failure, vehicles then are assigned time intervals between 

tests. Those time intervals are set to be shorter for vehicles with a higher probability of failure 

and longer for vehicles with a low probability of failure. The probability of failure model is 

based on several components: vehicle characteristics and vehicle use, vehicle ownership history, 

the results of the previous emission inspection test, and remote sensing measurements. Data used 

in this dissertation originates from several different sources. They include the Georgia 

Registration Database for 2010, Georgia Inspection and Maintenance databases for 2009 and 

2010, the Vehicle Identification Number decoder, the remote sensing database (Continuous 

Atlanta Fleet Evaluation Project for 2010), and EPA’s fuel economy database.  

 In addition to modeling, the emission inspection program will identify vehicles with a 

higher probability of failure and will introduce an analytical approach to emission inspection 

programs and provide a more efficient way to measure a vehicle’s emissions. By using this 

approach, a significant emission savings can be realized even if using a similar number of 

emission tests.



 

 1 

1 INTRODUCTION 

 Before the Industrial Revolution, outdoor levels of harmful air toxins were relatively low. 

With increased fossil-fuel production and usage, air quality has dramatically decreased. In 1948, 

a temperature inversion prevented a dense smoke cloud of sulfur dioxide and particulate matter 

from escaping into the atmosphere and kept it low to the ground in Donora, Pennsylvania 

(Melosi 2010).  Nineteen people died and almost 43 percent of the town’s population became ill. 

In 1952 “killer smog” hit London and 4,000 people perished. In 1953 New York had a serious 

smog attack and 200 people died. In view of the growing dangers of air pollution, in 1955 

Congress enacted the National Air Pollution Control Act to generate research on air pollution. 

However, pollution from automobile emissions was not considered for several more years. While 

pollution from vehicle emissions was a growing problem in the post-World War II era, carbon 

monoxide, nitrogen oxides, or particulate matter pollution was not viewed as a problem by the 

public. Los Angeles was the first city to raise concerns over automobile emissions as early as the 

mid-1950s. California was the first state to establish new car emission standards (Melosi 2010). 

By 1966 automobile emissions accounted for 60% of the pollutants throughout the nation. The 

Motor Vehicle Air Pollution Act of 1965 produced national standards comparable to California 

law for the 1968 model year. The rise in public environmental concern led to the Clean Air Act 

of 1970, which ultimately led to vehicle emission standards and periodic vehicle emission 

inspections. 

 The ultimate goal for any emission inspection is to reduce pollution from vehicle 

emissions by identifying and repairing vehicles with failing emission control systems.  In many 

jurisdictions, passing an emission test is a requirement for annual vehicle registration.  Vehicle 

emission inspections in the United States are provided for by the provision of the Clean Air Act 

(CAA) of 1970. The Clean Air Act called for the first tailpipe emission standard. Pollutants that 

were controlled are carbon monoxide (CO), volatile organic compounds (VOC), and oxides of 
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nitrogen (NOx) (United States Environmental Protection Agency 1999). The first inspection and 

maintenance (I/M) program implemented under this law was in New Jersey in 1974 (United 

States Environmental Protection Agency 1999). In 1977, the Clean Air Act Amendments 

(CAAA) mandated new vehicle emissions inspection programs in the areas that were considered 

to be in non-attainment for major pollutant categories from mobile sources. Driven by the growth 

in vehicle travel and continued air pollution problems, the 1990 Clean Air Act Amendments 

required the US EPA to develop federal regulations for two levels of emission inspection 

programs: basic emission inspection programs for moderate ozone non-attainment areas and 

enhanced emission inspection programs for serious non-attainment areas (Corley 2003). The 

difference between these two programs is the testing procedures, with basic programs continuing 

with existing technologies (e.g., idle testing) and the more advanced programs that would require 

more advanced testing procedures (i.e., initially IM240 and later Acceleration Simulation Mode 

(ASM) testing).  Both advanced tests used a loaded-mode dynamometer to quantify emissions 

from three types of pollutants: hydrocarbons (HC), carbon monoxide (CO), and oxides of 

nitrogen (NOx). The goal of the loaded-mode test is to simulate vehicle’s load at various driving 

cycles such acceleration, deceleration, and cruise modes. 

 Significant reductions in ambient air pollution from carbon monoxide, ozone and other 

pollutants (Air Trends Air & Radiation 2011) have been achieved in recent years. Emission 

inspections, among other factors such as vehicle technology (Kahn and Schwartz 2007) and 

cleaner fuel, have been very successful in curbing air pollution from vehicle emissions. Figure 

1-1 represents Continuous Atlanta Fleet Evaluation carbon monoxide emissions for measurement 

years 1993 through 2010. During that time carbon monoxide emissions decreased more than 

threefold. 

In addition to inspection and maintenance requirements, the 1990 CAAA requires US 

EPA to establish rules requiring using reformulated gas (RFG) to reduce vehicle emissions of 

toxic and ozone-forming compounds. The first regulations concerning certification and 
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enforcement of RFG were issued in 1994.  This was followed in 2001 by the Mobile Source Air 

Toxics (MSAT) rule, which placed additional controls on air-toxic emissions in all gasoline 

(Reformulated Gas 2007).  

To evaluate I/M program effectiveness CAAA requires that enhanced I/M programs 

include the use of on-road testing (0.5% of the fleet by either remote sensing or road side 

pullovers) and conduct a biennial program evaluation (Guidance on Use of Remote Sensing for 

Evaluation of I/M Program Performance 2004).  While emission inspections have been very 

successful in reducing pollution from vehicle emissions, they often have been criticized for their 

cost-effectiveness (Harrington, McConnell and Ando 2000); mostly because the majority of the 

vehicles tested has clean emissions. According to the U.S. National Research Council, U.S. 

emission inspection programs state that, typically, 10% of the fleet highest polluting vehicles 

contribute 50% or more of emissions. Emission inspections are trying to catch an increasingly 

smaller pool of high emitting vehicles. Nonetheless, that small number of high emitting vehicles 

present the greatest potential benefit gains for emission inspection programs since they are 

contributing a significant portion of total vehicle emissions. 
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Figure 1-1 Average CO Concentration in the Atlanta CAFE 1993 - 2010 

This research focuses on methods and procedures for making vehicle inspection and 

maintenance programs more efficient in the future by creating an algorithm for identifying 

vehicles that have a higher probability of failure, and testing them more frequently than vehicles 

with a low probability of failure. This effort is both needed and timely. While existing programs 

have been very successful in improving fleet-wide emissions they have, in a certain sense, 

become victims of their own success. As fleet-wide emissions are reduced and vehicle emission 

controls become more reliable, testing programs will need to test an increasingly larger number 

of vehicles to identify the limited number of vehicles needing repairs. In addition, this research 

addresses the lack of adaptability of current emission inspection programs to deal with changing 

vehicle fleets and emission inspection technologies as well as examining ways in which 

alternative testing measures such as vehicle remote sensing can be incorporated into future 

testing programs. It will also address the need to create a responsible ownership environment and 
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promote good vehicle maintenance practices by incorporating vehicle usage characteristics into 

rules for new programs. 

1.1 Research Objective 

This research concentrates on creating an emission inspection program that uses variable 

time frequencies between vehicle emission inspections based on vehicle characteristics.  The 

efficiency of the program in this case will be assessed by a decrease in emissions of carbon 

monoxide, hydrocarbons, and nitrogen oxides produced by gasoline powered vehicles. The 

reduction in emissions can be achieved by more frequently measuring vehicles that are likely to 

fail. More frequent measurements will result in repair or replacement of the polluting vehicle in a 

shorter time, thereby reducing pollution.  

For example, in the State of Georgia vehicles are inspected on an annual basis. Therefore, 

even though the vehicle may fail a day after it was inspected, it will be on the road almost twelve 

months before its next emission inspection is due. Figure 1-2 illustrates efficiencies that can be 

achieved if vehicles can be tested more often. 1996-1997 Arizona remote sensing data shows a 

12% reduction in CO emissions observed from its peak 3 weeks before an emission test and right 

before an emission test. This research suggests that vehicles are not being repaired until an 

emission test has to be taken. 
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Figure 1-2 Average CO RSD emissions by time period 

The proposed new program will help to incorporate other types of emission tests such as 

readings from wireless OBD systems, which are planned for future generations of OBD systems 

(Transitioning I/M Workgroup 2009) whenever a new technology comes online.  Vehicle remote 

emission sensing measurements are also integrated into the calculations of test frequencies, 

including all possible alternative tests, helping more accurately estimate probabilities of the 

vehicle potentially being a high emitter. Vehicle remote sensing emission measurement 

technology allows recording vehicle’s component emissions without stopping a vehicle. 

Furthermore, the mileage of the vehicle, annual vehicle travel, and other ownership 

characteristics such as length of ownership are taken into account as well.  



 

 7 

The proposed I/M program is based on a probabilistic approach for testing vehicles. It 

will take into account all possible alternatives to station tests, such as a use of telemetry devices, 

remote sensing data, previous test results, and vehicle usage to determine the probability of the 

next test. For example, vehicles that barely passed previous tests and have failed a test for 

vehicle remote sensing will have probabilities of being tested within the next three months higher 

than vehicles that were very clean during the previous testing period and have passed a telemetry 

test and/or have clean remote sensing records.  This kind of emission inspection testing will be 

able to adapt to changing fleet characteristics without legislatively changing emission inspection 

rules. If vehicle technology continues to improve, then the probability of testing newer vehicles 

will decrease, thereby concentrating on higher polluting vehicles.  

It is the intention of this program to fully utilize existing infrastructure. Additional costs 

of administering new rules will occur in the administration and in alternatives to station-based 

tests such as remote sensing. There is no new infrastructure investment that will be necessary. By 

testing vehicles that have a probability of being higher polluters it will be possible to increase 

program effectiveness without increasing the number of tests and therefore without major capital 

investment for emission inspection infrastructure.  

Several vehicle characteristics such as vehicle make, model year, odometer reading will 

be investigated and incorporated into the model that calculates the probability of failure. This 

program also will promote responsible ownership principles for vehicle owners that take care of 

their vehicles, since the probability of the vehicle being tested will be based on the individual 

vehicle record and on the records from the group that the vehicle belongs to. Currently, virtually 

all jurisdictions with emission testing programs base their subject vehicle requirements strictly 

on the age of the vehicle. Vehicle use is not incorporated in the rules and therefore does not have 

any bearing on the vehicle being tested. As part of this research, examination of the relationship 

between emission test failure rates and vehicle use is integrated into the model to determine 

emission inspection failure rates and frequency of testing.  
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 States such as California are employing what is called a ‘high emitter profile’. However, 

the way they use this data is vastly different than what is proposed in this research. The main 

difference between this proposed approach and programs such as California’s is that, as opposed 

to looking just at high emitting vehicles and requiring them to take a smog test at a certified 

emission testing location. The ‘high emitter profile” is based on vehicle make, model, and model 

year. If a vehicle falls into the category of high emitting vehicle based on the failure rates from 

previous emission test of vehicles with the same make, model, and model year it must be tested 

at a specially selected emission testing locations.  

 The proposed program will build on high emitter profile experience but it will go further.  

Not only high emitting vehicles but also clean vehicles, and based on their profile, will change 

the time between tests, therefore curbing vehicle emissions. 

1.2 Research Hypothesis 

 To increase efficiency of the emission inspection program, emission tests must 

concentrate on the vehicles that are likely to fail, since there little or no benefit of testing vehicles 

that are not going to fail the test and therefore are not going to be repaired. Emphasis for testing 

should be placed on vehicles that are likely to fail the emission inspection and testing those 

vehicles more frequently. More frequent testing will reduce time between vehicle emission 

control systems failed and the time vehicle is fixed, thus reducing overall emission produced by 

the vehicle. 

1.3 Research Approach 

 To achieve the research objectives all databases described above were merged to 

produce a dataset that is used hereafter. Vehicle remote sensing records, Inspection and 

Maintenance records, Georgia Registration database and a set of parameters such as vehicle 

group, OBDII codes, costs of repair, and vehicle ownership history are used to assess the 



 

 9 

probability of a vehicle failing the next scheduled emission test. Probability of failure is taken 

into account when calculating time intervals between emission inspection tests. 

 The following steps are taken to evaluate vehicle emission testing frequencies: 

 Use logit model to estimate probability of failure for each vehicle. 

 Based on those probabilities assign time interval coefficient for future tests. 

 Use remote sensing and vehicle emission inspection data to estimate the potential 

benefits of testing vehicles sooner.  

 Examine 2010 for failing vehicles and the time difference between test date and 

remote sensing measurement date. 

In this research only one case study of time frequencies between emission inspection test 

rules is examined. However, the time interval coefficient can be changed depending on the 

desired emission test program effectiveness and can be adjusted without significant effort.  
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2 LITERATURE REVIEW 

2.1 Review of Existing I/M Evaluation Methods 

To evaluate inspection and maintenance program effectiveness, the U.S. EPA 

recommends using two separate strategies. One uses in-program data, e.g., data collected from 

tests administered by an emission inspection program, while the second uses out-of-program data 

such as data from a remote sensing device (RSD) or roadside pullovers. Combining both 

strategies should produce the best possible results for I/M program evaluation. (Guidance on Use 

of Remote Sensing for Evaluation of I/M Program Performance 2004) 

In-program and out-of-program strategies will use different methods for program 

evaluation. In-program evaluation is based on the process and result-based analysis, whereas out-

of-program evaluation can use the step change, the comprehensive, and the reference analysis 

methods.  

The result-based analysis looks at the performance of the emission inspection and 

maintenance program such as pass/fail/abort/waiver rates, analysis of emission reduction and 

other analysis using in-program data. The process-based analysis looks at the achievement of 

proper fleet coverage, performance and accuracy of emission inspections, and documentation of 

repairs of failing vehicles. To have a comprehensive look at the I/M program, both methods 

should be combined. Using one without the other can’t guarantee a thorough evaluation of 

program effectiveness.  

As a part of the process-based analysis, a participation rate analysis is performed.  This 

process is illustrated in Figure 2-1. On this chart vehicles are split into vehicles that are 

registered in inspection and maintenance are and vehicles that are registered outside of 

inspection and maintenance area. Part of vehicles that are registered in inspection and 

maintenance program are vehicles that are participating in inspection and maintenance program. 

There are also vehicles that are registered outside of inspection and maintenance program but are 
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operating within geographical confines of inspection and maintenance program. The fleet in the 

inspection and maintenance area may be defined as simply vehicles registered in the area or as a 

set of vehicles driven in the area. (Draft Guidance on Use of In-Program Data for Evaluation of 

I/M Program Performance 2001)  

 Before evaluation of an emission inspection program can take place the participation rate 

of the eligible vehicles must be determined.  

 

The goal is to compare vehicle populations that are registered in the area and undergoing 

emission inspection, and the population of vehicles that are driven in the area. In addition to 

participation rates, comparing vehicle distributions from I/M records, Registration, and matching 

registration records with emission inspection records, using year-to-year trends, and using multi-

year trends should verify compliance rate estimates used in SIP, as well as estimate emission 

reductions. 

Out-of-program data uses different methods for emission inspection and maintenance 

program evaluation. Most commonly used methods are the step change, comprehensive, and 

Figure 2-1 Mix of vehicles within Inspection and Maintenance program area 
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reference methods. The main difference between the step change and comprehensive method is 

the number of remote sensing and/or roadside pullover measurements that are needed for each 

method. The step method usually requires anywhere from 20,000 – 50,000 (Guidance on Use of 

Remote Sensing for Evaluation of I/M Program Performance 2004) measurements, but is only 

applicable under particular conditions (e.g., a new program), whereas the comprehensive method 

requires many more remote sensing measurements, usually in the range of several million, but 

does not have these limitations. The reference method is designed to measure the full effect of 

the emission inspection program by measuring subject fleets from within an I/M program area 

and outside of it. The success of this method depends upon locating an area containing non-I/M 

fleets that would be similar in vehicle distribution to the I/M fleet. This method has been 

pioneered at Georgia Tech and is currently employed by the Georgia Tech Research Institute 

when evaluating the I/M program effectiveness of Georgia’s Enhanced I/M program. The data 

requirements for this approach are intermediate between the step change and comprehensive 

methods and are usually in the range of a few hundred thousand observations. 

Approaches for I/M program evaluation described above are recommended by the U.S. 

EPA but are not necessarily exclusive. Another approach to estimating program effectiveness is 

proposed by Glover and Brzezinski. The method described by Glover and Brzezinski was based 

on contrasting the initial test results of failing vehicles with passing results of the same vehicle. 

By aggregating that data they calculated the benefits of the emission inspection program. Results 

are based on 1995 Arizona IM240
1
 test results that produced emission concentrations. The 

compare and contrast approach has some advantages namely volume of data required; however, 

one major disadvantage is the use of in-program data and lack of ability to directly determine 

participation rates. A similar approach was used by Wensel to analyze 1996-1997 Arizona 

IM240 data, which produced similar results. (Wenzel, Reducing emissions from in-use vehicles: 

                                                 

1
 Vehicles 1996 and newer are equipped with OBD systems and therefore, the I/M test has become optional. 
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an evaluation of the Phoenix inspection and maintenance program using test results and 

independent emissions measurements 2001) 

Roadside pullover tests use remote sensing equipment used to perform Smog Check tests. 

The State of California employs a random roadside testing; this involves pulling a car to the side 

of the road and measuring its emissions. As evidenced by California roadside testing, even 

though vehicles were repaired in the Smog Check program their subsequent failure rate when 

pulled over was quite high. Even though after failing an initial test the vehicle was repaired, and 

passed the subsequent test, 40% of 1974-1995 model years were found to fail a roadside test 

within a year (California Air Research Board 2009). The high failure rate of the retested vehicles 

indicates that repairs that were made to a vehicle were insufficient or possibly no repairs were 

done to those vehicles at all. 

Yet another approach to evaluate the I/M program was proposed by Eisiger based on 

analytical analysis to design and evaluate motor vehicle inspection programs. Eisiger’s approach 

is based on real world data and it attempts to quantitatively calculate program effectiveness 

based on the capture and repair of problem vehicles as well as program avoidance by problem 

vehicles. Sensitivity studies suggest that identifying a greater number of problem vehicles (high 

emitters) and improving effective repair rates, both before and after I/M testing, will greatly 

improve program effectiveness (Eisinger 2005). 

2.2 Cost Effectiveness 

Full assessment of program effectiveness should be broader than merely an estimation of 

emission reductions. Costs and cost-effectiveness are very important criteria for determining 

whether social resources are well spent and for making decisions regarding improvements to the 

inspection program design. There are several costs associated with the I/M program, including 

the costs of finding a failing vehicle, costs to motorists, costs of program administration and 

oversight, and evaluation costs (Environmental Studies and Toxicology Transportation Research 
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Board 2001). Costs to motorists might have an adverse effect on different socioeconomic groups. 

These costs might include the monetary value of the I/M test and costs of repair. There are also 

costs of time associated with test taking. 

To estimate emission benefits achieved by the Georgia emission inspection program, the 

reference method is employed. The reference method is often used in emission program 

effectiveness evaluation, as reviewed in section 2.1. The reference method compares two groups 

of vehicles. Vehicles subject to emission inspection were compared to vehicles not subject to 

emission inspection, i.e., vehicles registered outside the inspection and maintenance Atlanta area. 

Measurement for vehicles that were not registered in Atlanta metro were obtained by direct 

measurements in Macon and Augusta, GA as well as some uninspected vehicles captured in 

metro Atlanta locations. Macon, GA vehicles have a similar fuel composition to metro Atlanta 

fuel, therefore fuel differences are not examined in this research.    
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Figure 2-2 Carbon monoxide vs. model year for inspected and uninspected fleet 

Figure 2-2 represents average carbon monoxide values for each model year starting at model 

year 1986 and ending at model year 2007 (2007 is the first year that vehicles become eligible for 

emission inspection in Atlanta, GA). Carbon monoxide produced 28 percent savings when 

inspected versus un-inspected fleets were compared. Economic benefit calculations will be 

presented later in the paper.  

 To estimate the hydrocarbon reductions from vehicle emission inspection, a technique 

similar to the carbon monoxide technique was applied. First, data were grouped by model year 

and model years for  the inspected  and un-inspected fleets were compared. Figure 2-3 represents 

average hydrocarbon emissions grouped by model year. Based on that chart vehicle emission 

inspection produced reduction of 18 percent for hydrocarbons. Economic benefit calculations for 

the hydrocarbons are discussed later in the paper.  

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4
C

O
, 

P
er

ce
n

t 

Model Year 

Inspected

Uninspected



 

 16 

 

Figure 2-3 Hydrocarbons vs. model year for inspected and uninspected fleet 

 

  Calculation of emission inspection benefits for nitrogen oxides follows suit of similar 

calculations for carbon monoxide and hydrocarbons. It is estimated that an emission inspection 

program produces 25 percent cleaner vehicles than vehicles from areas without emission 

inspection. Figure 2-4 represents average nitrogen oxides readings for model year groups. 

Vehicles for every model year in areas with emission inspection are cleaner than their 

counterparts from the area without emission inspection.  
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Figure 2-4 Oxides of nitrogen vs. model year for inspected and uninspected fleet 

 

2.3 Emission Inspection Test Types 

2.3.1 OBD 

On Board Diagnostic (ODB) systems were first developed in 1988 by the California Air 

Resources Board (CARB) and the California Bureau of Automotive Repair (BAR) and was 

called OBD I.  A second generation of OBD systems, OBD II, is used on vehicles today. The 

Clean Air Act Amendments of 1990 mandated that, starting with the 1996 model year, all light 

duty vehicles and trucks for sale in the United States must be equipped with such a system. The 

OBD II system can monitor all emission components and can diagnose problems of the 

computerized emission control. (U.S. Environmental Protection Agency n.d.) 
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 Passing and failing vehicles can span a wide emission spectrum. The OBD II system is 

believed to be at least as sensitive for detecting emissions failures as any other type of testing.  

“A vehicle can have up to twelve monitors built into the OBD computer system. The most 

common monitors are:  

 Continuous: 

 Misfire 

 Fuel System 

 Comprehensive Components 

 Non-Continuous: 

 Oxygen Sensor 

 Heat Oxygen Sensor 

 Catalyst Efficiency 

 Evaporative Emissions System 

 ERG System 

 Secondary Air System 

 PCV System” (Agency, Illinois Environmental Protection 2013) 

 

2.3.2 IM240 Emission Inspection Test 

The IM240 test was developed by the U.S. EPA  a short form of the Federal Test 

Procedure. It lasts 240 seconds and captures the essential elements of the Federal Test Procedure, 

which is a standard exhaust emission test (Enns, et al. 1999). The IM240 test is trying to simulate 

a real world chassis dynamometer by using a chassis dynamometer for testing of in-use light 

duty vehicles. It is a short, 240 second test representing a 1.96 mile (3.1 km) route with an 

average speed of 29.4 miles/h (47.3 km/h) and a maximum speed of 56.7 miles/h (91.2 km/h) 

(Emission Test Cycles: IM240 2010). Figure 2-5 below illustrates the speed and acceleration 

profile used in the IM240 cycle. 
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Figure 2-5 IM240 Speed Trace 

2.3.3 Acceleration Simulation Mode (ASM) 

The acceleration simulation mode test uses a dynamometer to simulate real world driving 

conditions. “In a sense it’s like a treadmill stress test for your vehicle.” (ASM/TSI Emission 

Testing 2011) During the test, carbon monoxide, hydrocarbons, and oxides of nitrogen are 

measured.  Unlike the transient nature of the IM 240 test, ASM uses loaded testing at various 

fixed speeds in a multistage cycle (e.g. 25/25, 50/15, etc., where the numbers indicate the wheel 

speed in miles per hour for each test phase). ASM was developed by CARB and BAR as a 

cheaper alternative to the EPA IM240 test and is currently the most popular dynamometer-based 

testing scheme.   

2.3.4 Vehicle Specific Power 

 One of the specificities of vehicle remote emission sensing is that driving conditions can 

strongly influence vehicle emissions. For example, when the car is in coasting mode, even a dirty 

vehicle can produce low concentration reading, and conversely, high power demand on the 

engine can produce enrichment for clean vehicles. Therefore, it presents the problem of 
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identifying false clean vehicles or false high emitting vehicles. To help resolve that problem, the 

term Vehicle Specific Power (VSP) is introduced (Jimenez, et al. 1998).  VSP is the measure that 

seeks to normalize vehicle power requirements by utilizing the physical characteristics of the site 

and driving conditions to examine instantaneous power demand. It uses the site’s slope and 

vehicle’s speed and acceleration as input parameters. 

VSP can be defined as:  

   

Where VSP is in KW/metric tonne, V is Speed in MPH, and A is Acceleration in MPH/s.  

Different emission tests, including vehicle remote sensing, have different VSP profiles. 

Because vehicle remote sensing is a measure of real world emission and sites often are located 

on the up slope it has higher VSP readings than IM240 and FTP tests (see Figure 2-6). (Jimenez, 

et al. 1998) 

 

Figure 2-6 Vehicle Specific Power ranges for types of tests 

 

To identify clean and high emitting vehicles it is recommended that a VSP range of 3 to 

22 kW/Tonne should be used. (Jimenez, et al. 1998) 



 

 21 

2.4 Existing I/M Programs 

2.4.1 Georgia 

Atlanta’s Metro area basic I/M program started in 1981 including three counties: Fulton, 

Cobb, and DeKalb use a simple idle testing scheme. Gwinnett County was added to the program 

in 1986. Even with vehicle emission controls in place, Atlanta was still exceeding the one hour 

ozone concentration standard of 0.120 parts per million at the time of the 1990 CAAA and was 

thus subject to a requirement of enhanced testing. In 1992, the state legislature mandated that 

Georgia’s I/M program be expanded and more advanced testing be performed. After significant 

debate, in 1996 the Georgia I/M program was expanded to 13 counties including Cherokee, 

Clayton, Cobb, Coweta, DeKalb, Douglas, Fayette, Forsyth, Fulton, Gwinnett, Henry, Paulding, 

and Rockdale, and ASM testing was required for all vehicles.  In 1999, OBD testing replaced 

ASM for 1996 and later model years.  

A key feature of the enhanced program was the requirement that vehicles to be registered 

in the thirteen counties must pass an emission test if a vehicle included the following 

characteristics: 

All gasoline-powered cars or light-duty trucks (8,500 pounds gross vehicle weight rating 

or less) registered in the above mentioned counties except:  

 The three most recent model year vehicles are exempt from emission testing each 

year. For registration in 2011, this includes all 2009 and newer model year vehicles.  

 Additionally, vehicles that are 25 model years or older are exempt from emission 

testing. This includes 1986 or older model year vehicles.  

 Motorcycles, recreational vehicles (RVs) and motor homes do not require emission 

testing for registration. 

 Diesel vehicles do not require emission testing for registration. (Division 2011) 
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2.4.2 California 

In addition to common rules for any emission inspection program such as the type and 

age of the vehicle, California also employs a High Emitter Profile. The majority of vehicles 

directed to Test-Only stations are selected by application of the High Emitter Profile (HEP), 

which identifies the vehicles most likely to fail their Smog Checks. Data for High Emitter 

Profiling comes from several sources: 

 Vehicle Information Database (VID), which consists of emission inspections 

performed in California 

 Department of Motor Vehicles (DMV) 

 BAR 

 General Vehicle Information: make, model year, vehicle miles traveled and engine 

size (California Bureau of Automotive Repair, Department of Consumer Affairs 

2011) 

Above mentioned information is used to determine which vehicles are most likely to fail 

their Smog Checks, especially at Gross Polluter levels--at least two times the emissions level 

allowed for a particular vehicle. No single factor identifies a vehicle for a Smog Check to be 

done at a Test-Only station. The data is weighted and vehicles are selected using this computer 

profiling of vehicles most likely to fail their Smog Check. To create HEP and examine the 

probability of vehicle failure BAR uses: 

 Model year, make, model, body style, engine displacement, and transmission type; 

 Previous initial Smog Check inspection result for each vehicle; 

 Elapsed time since each vehicle’s last Smog Check certificate; 

 The last Smog Check odometer reading for each vehicle. (Bureau of Automotive 

Repair, Directed Vehicle 2011) 
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However, since some of the vehicles have just a few tests and statistical significance 

can’t be ascertained from those tests, some vehicles are clustered. For example, if there are only 

a few records of 2005 Ferrari models, they are combined with 2004 Ferraris. In that case they 

will also exclude engine and transmission types from consideration since they might be different.  

Vehicle information and emission test results are compiled into HEP, that was developed 

by Eastern Research Group (Tom Wenzel 2003), which uses it to identify potentially high 

emitting vehicles. 

2.4.3 States Other than Georgia and California Programs 

Other jurisdictions requiring emission inspections follow similar principles with some 

variations. In all, 32 states and the District of Columbia have emission inspections (see Appendix 

Table A-1 Review of state emission inspection programs).     

Approximately 30% of all emission inspections are performed biennially.  New vehicle 

exemption ranges from two to six years. The upper age is set either by the maximum age of the 

vehicle (in most cases it is 25 years) or by the oldest model year that will be tested, for example 

1979. 

Biennial vehicle testing may lead to much higher vehicle exhaust pollution than 

anticipated, since if a vehicle’s emission control equipment fails shortly after it was inspected it 

will be on the road for almost 24 months before it will have to be repaired to pass the next 

emission test. 

Emission inspection rules have existed in the same form with minor tweaks for the 

majority of their existence. Vehicle technology, however, has advanced greatly in a relatively 

short time period of 10–15 years. For the most part emission inspection program uses single 

criteria to identify subject for the emission inspection fleet. Age of the vehicle is a determining 

factor in defining vehicle eligibility. Therefore, if technology advancements for some vehicles 

makes it less likely to be a high emitting vehicle it is still being tested as often as the rest of the 
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vehicles. This research will explore a way that changes in the fleet will be accounted for, and I/M 

programs will make on-the-fly adjustments and will be adaptable to those changes in real time.  

2.5 Wireless OBD Technologies 

One upcoming innovation in vehicle emission controls will be wireless OBD systems. It 

is possible that the next generation of OBD technology will be wireless. While not yet official, a 

universal set of technical standards and protocols are currently being developed by the U.S. EPA 

(Transitioning I/M Workgroup 2009). It has the potential to have a great impact on reductions of 

vehicle emissions. By transmitting a signal that contains emission information wirelessly, it will 

minimize or eliminate the need for physical connection to the vehicle. Some telemetry devices 

such as GM’s OnStar systems are already capable of transmitting a vehicle’s emission readings 

over a wireless connection to a centrally located server. 

Remote OBD Monitoring Fundamentals: 

 Remote OBD gathers the same inspection data as conventional inspection, with 

wireless transmission replacing the cable connection used at a physical inspection 

facility. 

 The wireless transmission of OBD data can be accomplished with Original 

Equipment Manufacturer (OEM) equipment, such as OnStar, or with an add-on 

device. 

 The remote OBD link is a small unobtrusive instrument installed once in the vehicle’s 

diagnostic link connector that can transmit at any time with the vehicles on board 

computer. 

 Data that reflects the emissions status of the vehicle is temporarily stored in the link 

for transmission to remote OBD access points that convey real-time inspection 

records to a central database. 
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 Remote OBD access points consist of: 1) a ground-based network of short range radio 

receivers, 2) a cellular communications network or 3) satellite communications. The 

wireless access point then relays the vehicle inspection record to the inspection 

database (VID). (Transitioning I/M Workgroup 2009) 

There are certain capabilities of remote OBD monitoring that may offer improvements 

over common periodic inspection limitations: 

 Continuous Monitoring—the ability to identify OBD faults on a frequent or real-time 

basis can drastically reduce the period of excess vehicle emissions between 

inspections. This may result in a measurable and creditable emission reduction for the 

inspected fleet. 

 Repair Factor Determination—the ability to determine the exact period after a 

malfunction indicator light (MIL) triggering event has occurred and the MIL is 

extinguished (presumably by repairs). 

 Enhanced QA Capabilities—remote OBD monitoring can be used to identify 

inspection anomalies, defeat devices and other types of fraud. 

 Continuous Repair Improvement with electronic notification—upon a change of OBD 

status, motorists, repair professionals and government have the means to evaluate 

several crucial program performance factors including repair durability, monitor 

readiness anomalies, deterioration rates, battery disconnects, etc. (Transitioning I/M 

Workgroup 2009) 

Although wireless technology is currently very sparsely implemented (mostly on GM 

vehicles), it needs to be included in consideration for future emission inspection programs.  

 

 

  



 

 26 

2.6 Vehicle Type 

Differentiation among groups of vehicles is very important. Vehicles with different 

characteristics will produce different emissions. Figure 2-7 shows the difference between car and 

truck carbon monoxide emissions as identified by VIN decoder for Denver 2001 RSD data 

collection (Environ International Corporation March 2004). However as time goes on those 

differences become less noticeable. Somewhat similar results are illustrated in Figure 2-8. This 

figure is based on results of 2010 CAFÉ measurements. However both of those charts describe 

vehicle emissions based on mass emissions such as grams per mile and grams per gallon basis. 

Emission standards, however, look at emissions from relative emission component 

representation. Relative concentration differences for cars and trucks are less noticeable. For 

example, Figure 2-9 displays differences between automobile and truck emissions based on 

CAFÉ data collection for calendar year 2010. Based on Figure 2-9 there is no substantial 

difference in carbon monoxide emissions. Vehicle carbon monoxide emissions become 

somewhat different for vehicles that are older than fifteen years old, however those vehicles 

represent a very low percentage of the total vehicles, therefore total fleet inspection failure and 

emission rates may be similar. 
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Figure 2-7 Mean CO emissions as a function of vehicle age of RSD data (g/gal) and from 

MOBILE6 (g/mile): Denver, 1999 – 2001 

 

Figure 2-8 Mean CO emissions as a function of vehicle age of RSD CAFÉ 2010 data g/gallon, 
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Figure 2-9 CAFÉ 2010 CO emissions vs. vehicle age for car and truck vehicle category 

  

 Even though the difference between passenger cars and trucks exists in grams per mile 

and grams per gallon readings, largely due to differences in fuel economy (Figure 2-7 and Figure 

2-8), the difference in percent emission readings is practically non-existent (Figure 2-9). 

Nevertheless, to answer the research questions posed, all vehicles are assigned to vehicle 

categories. Vehicle performance and durability may vary by vehicle category. This assumption 

will be checked in this research. In fact, several authors make predictions for future test results 

based only on the make, model, and model year of the vehicle (Beydoun and Guldmann 2006). 

However, even if that were possible one would need to collect an immense number of 

observations and even then not all makes and models would be covered. Results for some groups 

of vehicles would be greatly dependent on the vehicles that were sampled, especially if the 

sample size is low. To increase the sample size of each analyzed group, use of vehicle categories 
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contexts. For example, EPA size type and market segment categories are listed in Table A-7 in 

the Appendix. 

Example of vehicle classification by EPA’s MOBILE6.2 (Technical Guidance on the Use 

of Mobile6.2 for Emission Inventory Preparation 2004) or MOVES models (Draft MOVES2009 

Highway Vehicle Population and Activity Data 2009) vehicle classifications seen in Appendix 

Table A-5 and  

Table A-6 respectively. However, all passenger vehicles in those models are lumped into 

one category: LDV (Light Duty Vehicle). For this research that kind of classification will not 

provide enough in-depth information.  To identify groups of passenger vehicles, EPA’s vehicle 

size type will be more appropriate. It includes seven passenger vehicle categories. For the truck 

category the MOBILE6.2 vehicle classification representation seems to be more useful. For light 

duty trucks it includes four categories, LDT1 though LDT4. Therefore, for this research a hybrid 

vehicle classification composed of EPA vehicle size classes for passenger vehicles and passenger 

vans and MOBILE6.2 for pick-up trucks will be investigated.  

To obtain MOBILE6.2 classification, CAFÉ and I/M data were decoded using a VIN 

decoder. The EPA’s fuel economy tables will be used to coordinate makes and models to EPA 

size classification. 

 In addition to vehicle categories, vehicles are grouped based on model year and mileage 

records obtained from Georgia’s registration database and Georgia inspection and maintenance 

records. 
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3 RESEARCH METHODOLOGY 

One way to achieve more efficient vehicle emission testing with the current infrastructure 

is to concentrate on vehicles that have a higher potential to fail and therefore have higher 

emission rates. To achieve that objective several vehicle characteristics such as age, type, and 

engine displacement are incorporated in this research effort. Vehicle criteria related to use and 

ownership history are investigated as well.  In addition, past emission test results as well as 

remote sensing measurements of a vehicle’s emissions are included in the model. To compile 

lists of vehicle characteristics, this research draws data from several data sources: Georgia 

registration database for 2010, Georgia Inspection and Maintenance databases for 2009 and 

2010, and VIN decoder software, developed by Eastern Research Group, as well as experimental 

measurements from the Continuous Atlanta Fleet Evaluation (CAFÉ) project conducted during 

2009 and 2010 calendar years.  

To achieve maximum effect, vehicles with higher probabilities of failure would be tested 

out of their schedule. Those early emission tests will reduce the total emissions produced by 

motor vehicles. To evaluate the potential benefits of changing the time frequency between 

subsequent emission tests, remote sensing data matched to inspection and maintenance data for 

2010 is used. To calculate the benefit of early testing, vehicles are broken into two groups: those 

that did not fail an emission test during 2010 and those that failed a test in 2010 and were 

repaired.  The next step after estimation of the potential benefits of more frequent testing are 

identified is to find the probability of vehicle failure for each individual vehicle. To determine 

the probability of individual vehicle failure based on vehicle characteristics obtained from 

datasets listed above, a generalized linear model with binomial distribution and logit link is used. 

The logit model is ideally suited for the binary nature of pass/fail outcome and therefore is 

employed in this research. 

The general linear regression model has the form: 
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Where   is the response, or dependent, variable 

           are unknown parameters 

           are the regressors, or independent, variables 

  is a random error term  

The probability   of failing the test is stated as  

   
 

      (     ) 
 

where X is a vector of independent variables 

  parameter to be estimated 

  parameter to be estimated 

Based on the estimated probability of failure, the proposed policy will introduce a testing 

timetable with variable timing for each individual vehicle that directs owners of vehicles with a 

higher probability of failure to have more frequent tests and less frequent tests for vehicles with a 

low probability of failure.
2
 Vehicles with a higher probability of failure will be assigned higher 

frequency of testing, thus reducing the amount of time they stay on the road with higher than 

typical emissions before repairs. Vehicles with a lower probability of failure, on the other hand, 

will have more time between tests.  Because those vehicles are cleaner, they are unlikely to fail 

an emission test and therefore are not likely to be repaired. Without repair there are no changes 

in emissions of the vehicle. Figure 3-1 graphically represents the research methodology that is 

utilized in this research.  

                                                 

2
 Currently the majority of emission inspection programs have annual test requirements 
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Figure 3-1 Research methodology analysis flow 

 

3.1 Data used for this research 

There are seven main data sources that will be utilized for this study. They are: 

Continuous Atlanta Fleet Evaluation (CAFÉ) database, Georgia Registration Database (GRD), 

VIN Decoder, Georgia I/M database, OBDII database, Fuel Economy database, and 2010 Census 

Block data.  
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 The CAFÉ database collected by the Air Quality Group (AQG), Georgia Tech 

Research Institute (GTRI) contains on-road vehicle emissions captured by a remote 

sensing device that examines the absorption of infrared and ultraviolet sources of 

lights. For the period to be examined, data were collected covering all four seasons 

and all twelve months. The sample was collected in 13 counties in the Atlanta non-

attainment area as well as control counties located in Augusta and Macon, which are 

Georgia metro areas. This data set contains carbon monoxide, carbon dioxide, 

hydrocarbon, and nitrogen oxide measurements as well as the vehicle’s speed and 

acceleration at the time of measurement. 

 The Georgia vehicle registration database provides VIN information as well as a basic 

description of the vehicle such as make, model, year, and mileage reading. 

 The I/M database of the State of Georgia provides Georgia’s annual inspection test 

results. The results include but are not limited to date of the test, test results, vehicle 

information, and OBDII code information. 

 The VIN decoder provides detailed vehicle information related to technical 

specifications such as vehicle engine displacement, number of cylinders, fuel 

aspiration and induction, emission controls, catalyst information, vehicle weight, and 

MOBILE6 vehicle classification. 

 The EPA vehicle fuel economy database provides data compiled from individual 

model years from EPA’s <fueleconomy.gov> web resource.  

 The OBDII code database is a combination of manufacturer-specific OBDII codes as 

well as generic OBDII codes that are used on multiple vehicle makes and models. 

 2010 Census block data for the state of Georgia. 
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Figure 3-2 Thesis data flow 

 Figure 3-2 represents the generalized data flow employed in this dissertation. A more 

detailed survey is shown in the following figure.  
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Figure 3-3 Data workflows 

 Figure 3-3 represents the detailed data flow used for this research. 
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3.1.1 CAFÉ Data 

 The Air Quality Group of Georgia Institute of Technology/Georgia Tech Research 

Institute performed pilot remote sensing studies in November of 1991. The CAFÉ project started 

in summer of 1993 and continues to the present time. From 1991 to 1998, CAFÉ data were 

collected by the School of Earth and Atmospheric Sciences, Georgia Institute of Technology. 

From 1998 to 2005, CAFÉ data were collected by the School of Civil and Environmental 

Engineering, Georgia Institute of Technology, and after 2005 by the Georgia Tech Research 

Institute. The Air Quality Group resided from 2005 to 2008 in the Health and Environmental 

Systems Laboratory and from 2008 to present in the Aerospace Transportation and Advanced 

Systems Laboratory. The primary objectives of the CAFÉ project are to characterize fleet 

emissions and observe fleet changes over time, evaluate the efficiency of 

Inspection/Maintenance Programs, develop recommendations regarding high emitting vehicle 

identification, and examine socioeconomic effects (a public policy aspect of the project). To 

achieve CAFÉ project objectives, collected remote sensing data with processed license plates is 

matched with the State of Georgia Registration database and the Georgia Inspection and 

Maintenance database. To obtain representative sampling, between 250,000-400,000 

measurements annually were performed over the years in 40 – 50 sites selected after careful site 

evaluation. The Air Quality Group created guidelines for remote sensing site selection that are 

widely used in the industry currently. Remote Sensing measurements are performed 12 months a 

year. The sites represent areas with high variability of traffic mix and with various 

socioeconomic conditions. Initially, locations for remote sensing measurements were limited to 

thirteen counties in the Atlanta Metro area but were later expanded to eight additional counties 

adjacent to the Atlanta Metro area, and to Macon and Augusta, GA. Based on remote sensing 

data, the Air Quality Group performs bi-annual policy evaluations of the Georgia I/M program. 

Data collection results and high emitter analysis are reported annually. Evaluation of the 

efficiency of the Georgia I/M program was performed using the reference method by evaluating 
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emissions in the areas with an I/M program (Metro Atlanta) and without an I/M program (Macon 

and Augusta, GA). Results of historical fleet evaluations can be seen in APPENDIX B, which 

represents excerpts from the CAFÉ report 1993–2008. Data used in this research represents a 

CAFÉ dataset for calendar year of 2010.  

Remote sensing devices (RSD) use the principles of infrared (IR) and ultraviolet (UV) 

spectroscopy (Remote Sensing: A Supplemental Tool for Vehicle Emission Control n.d.). 

Vehicle remote emission sensing is capable of measuring CO, CO2, and HC uses non-dispersive 

infrared (NDIR) and NOx using ultraviolet absorption spectroscopy as well as speed and 

acceleration of the vehicle.  

“Remote sensing is a way to measure pollutant levels in a vehicle’s exhaust while the 

vehicle is traveling down the road. Unlike most equipment used to measure vehicle 

emissions today, remote sensing devices (RSD) do not need to be physically connected to 

the vehicle. The concept of an efficient tool to monitor the vehicle fleet and identify 

excessive polluters has great appeal as a complement to traditional mobile source 

emission control programs. A number of instrument manufacturers are actively 

developing RSD systems.” (Remote Sensing: A Supplemental Tool for Vehicle Emission 

Control n.d.)  

 A beam of light from the source of IR and UV radiation is directed across the road and 

reflected by a mirror on the other side of the road toward the receiver, which contains a series of 

detectors for each pollutant. When a vehicle crosses the beam, concentrations of pollutants in the 

exhaust plume are determined in real time based on their absorption of IR (for HC, CO, and 

CO2) and UV (for NOx) light (Bishop and Stedman 1996).  At the same time, the  rear view of 

the vehicle with license plate is captured by video camera. Total measurement takes ½ second. In 

real world conditions over a thousand measurements can be done during one hour. 

There are several advantages and disadvantages of this technology. The main advantage 

of remote sensing is that it is able to measure vehicles under driving engine loads without 
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stopping them and therefore it is measuring real world emissions. Since the vehicles are 

operating, collected emission data comes not from an idling engine but of an engine pulling the 

weight of a vehicle plus the payload. Remote sensing can make measurements very rapidly, 

allowing for collection of a great number of samples in a very short period of time, making data 

collection relatively inexpensive. The average of CAFÉ measurements in the Atlanta area is 

about 5,000 vehicle readings per day. Naturally, particular site vehicle counts will depend on 

vehicle volumes, which vary by location. One of the main disadvantages spurs from its principal 

advantage. Since vehicles are traveling under normal driving conditions and the measurement is 

being conducted with minimal influence on driving mode, each measurement depends on driving 

conditions. Researchers have very little control over driving conditions; therefore, depending on 

whether a vehicle was accelerating or slowing down when it passed the remote sensing 

equipment, exhaust concentrations of the vehicle can be different. There are some mitigating 

measures to reduce variations in driving conditions. Principally driving conditions can be 

controlled by proper site selection. Therefore, site selection for remote sensing measurements is 

a vitally important step for a successful remote sensing project.  

3.1.1.1 Site Selection  

Site selection is a crucial aspect of any study that employs remote sensing methods. 

Remote sensing sites should meet several criteria: 1) they should be safe for both drivers and 

operators (e.g., adequate sight distance and safe access) and have sufficient space on both sides 

of the roadway to safely place the equipment; 2) the sites should have road geometries and 

vehicle operating modes compatible with and desirable for remote sensing (e.g., single lane 

operation, moderate vehicle specific powers, absence of cold start emissions); and 3) sites should 

be geographically located in areas that are desirable for a particular study in terms of 

demographics and fleet composition. Figure 3-4 illustrates CAFÉ remote sensing site locations in 

the thirteen counties of Metro Atlanta. 
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Figure 3-4 Remote sensing sites for the Continuous Atlanta Fleet Evaluation (CAFÉ) in the 

thirteen-county Atlanta, Georgia Metro Area  

 

Remote sensing works best if the subject vehicles are operating in a predictable manner 

and the vehicles’ engines are running under a moderate continuous load. This is generally easier 

to accomplish if the vehicles are running at moderate speeds either on a small positive grade 

and/or with modest positive accelerations. To achieve continuous load on the engine, small 

positive grades are generally more desirable.  
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3.1.1.2 Speed and Acceleration 

In addition to exhaust components, speed and acceleration data are collected. Speed and 

acceleration of the vehicle is a very important parameter for estimation of vehicle emissions, 

since emissions greatly depend on the vehicle’s engine loads. It is also significant because under 

real world driving conditions every driver behaves differently. Thus, by measuring speed and 

acceleration we are able to compare vehicles not only in the same site location but also at 

different remote sensing site locations. 

Speed and acceleration of vehicles are measured by speed and acceleration bars (Figure 

3-5) located on both sides of the roadway. One bar is equipped with two low-power lasers. The 

bar located on the other side of the roadway is equipped with two receivers. 

 

Figure 3-5 Speed Acceleration Bar 
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3.1.1.3 Vehicle Specific Power  

Because every sampling location has different geometric features, and vehicle speed and 

acceleration differ from vehicle to vehicle, there is a need to normalize those conditions to be 

able to compare vehicles at different locations and with different velocities and accelerations. To 

estimate engine loads, Vehicle Specific Power (VSP) is utilized. 

Vehicle Specific Power is the measure that seeks to normalize vehicle power demands by 

using physical characteristics of the site and driving conditions. It uses the site’s slope and 

vehicle’s speed and acceleration as input parameters. VSP can be calculated as:  

  (J. L. Jimenez, 

et al. 1999) 

Where V is Speed in MPH, and A is Acceleration in MPH/s, VSP is in KW/metric tonne.   

Example: A vehicle traveling 40 MPH with an acceleration of 1 MPH/s at the site with 2 degrees 

upgrade will have VSP =19.6 KW/tonne (16 HP/short tonne). It is important to note that VSP 

readings for CAFÉ measurements were slightly higher than those reported in the CRC E-23 

Report (Slott 2002). Higher VSP readings imply that data collected for the CAFÉ project was 

collected from the vehicles with higher engine loads. At extremely high VSP readings it is 

possible for the engine to reach fuel enrichment stage and produce artificially high emission 

readings. However, the differences between VSP reading for CAFÉ project and are mainly due 

to differences in the type of site locations. E23 sites were located at the end of a cloverleaf-style 

ramp (A Policy on Geometric Design of Highways and Streets 2001), which produce smaller 

engine loads since acceleration on this kind of intersection is on the lower side of the scale. Most 

of the remote sensing sites in the Atlanta area are diamond-type interchange (A Policy on 

Geometric Design of Highways and Streets 2001), which produce slightly higher acceleration 

when compared to cloverleaf-style alternative.  
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Figure 3-6 CAFÉ 2010 vehicle specific power (kW/Tonne) distribution 

 

 A desirable range of VSP for remote sensing measurements is between 0-30 kW/Tonne. 

Figure 3-6 shows the observed VSP distribution for the approximately 360,000 remote sensing 

measurements from CAFÉ 2010. The majority of remote sensing measurements are in that range. 

To further understand the effects of engine load on exhaust, let’s examine carbon 

monoxide emission (Figure 3-7) for vehicle groups based on the model year. Looking at the 

group of newer vehicles, in this case it is 2008 and newer vehicles, it is evident that at higher 

VSPs those above a VSP of 30 kW/Tonne carbon monoxide exhaust emission can be three to 

four times higher than those in the VSP range of 0-30 kW/Tonne. This range is consistent with 

recommendations from the literature (Jimenez, et al. 1998). To a slightly lesser extent negative 
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VSPs carbon monoxide emissions are higher than for the VSP range of 0 – 30 kW/Tonne. 

Therefore vehicles that are not in VSPs range of 0 to 30 are excluded from analysis.  

Figure 3-7 represents VSP readings for vehicle age groups versus carbon monoxide 

emissions. For newer vehicles, emission control equipment can contain carbon monoxide 

emissions in check for a wide range from negative VSP readings to about 35 kW/Tonne. 

However, for older vehicles the range of acceptable VSP readings is much lower. At 

approximately 30 kW/Tonne, older vehicle carbon monoxide emissions start to deteriorate at a 

much quicker pace.   

 

Figure 3-7 Carbon monoxide vs. VSP group by model year 
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 Thus, analysis of vehicles that have VSP readings higher than 30 will introduce fuel 

enrichment and higher emission concentrations due to higher vehicle engine loads. At high VSP 

readings an otherwise clean vehicle can be determined to be a high emitting vehicle.  

 Hydrocarbon vehicle exhaust emissions behave differently than carbon monoxide 

emissions. For newer vehicles, hydrocarbon readings stay flat over the entire range of VSPs 

(Figure 3-8). Older vehicles, on the other hand, have a much higher HC reading at negative and 

low VSPs. Low VSPs occur mostly during deceleration. During deceleration a portion of the fuel 

is un-burned and coming out of the tailpipe, which increases hydrocarbon readings. Therefore 

vehicles with negative VSPs should be avoided when analyzing HC emissions. 

 

Figure 3-8 Hydrocarbon vs. VSP for model year groups 
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VSP, spanning from the negative range to around 40 or 50 kW/Tonne. However, for older 

vehicles, deterioration of emission control equipment, with a few exceptions, can be seen in the 

whole range of VSPs. 

 

Figure 3-9 Nitrogen oxides vs. VSP for model year groups 
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3.1.1.4 Remote Sensing Site Evaluation 

To evaluate remote sensing sites, researchers visit prospective locations and spend 

sufficient time to evaluate layout and traffic characteristics. Each potential remote sensing site is 

assigned a unique identification number (ID) for future reference and compiled into a database 

with site characteristics such as location, average speed (measured by laser rangefinder), average 

flow, road grade, latitude, and longitude, as well as photographic imagery and a site plan (Figure 

3-10) that shows the equipment placement. Each location is evaluated for safety of personnel and 

equipment. A list of remote sensing sites can be found in the Appendix Table A-4 Remote 

sensing locations. 

 

 Figure 3-10 Typical remote sensing site plan 
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3.1.1.5 Remote Sensing Equipment  

To collect vehicle remote sensing measurements, an unmarked van equipped with an 

RSD-3000+ system manufactured by Environmental System Products, Inc. was used. This 

equipment is capable of measuring carbon monoxide, carbon dioxide, and hydrocarbons using 

non-dispersive infrared (NDIR), and nitrogen oxides using ultraviolet absorption spectroscopy; 

speed and acceleration of the tested vehicles using a speed bar; and a license plate image using 

an automatic digital camera. The van is also equipped with a calibration system for all measured 

gases to ensure proper calibration of the system before and during. Figure 3-11 illustrates a 

typical remote sensing site equipment setup.  

 

 

 

 

 

Figure 3-11 Typical remote sensing site setup 
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3.1.1.6 CAFÉ Data collection 

Data collected during calendar years 2009 and 2010 consisted of data from 72 and 69 

van-days of measurements utilizing 31 and 26 sites, respectively. Most of the sites were visited 

at least twice during different seasons to account for seasonal differences in emissions. 

Significance of seasonal variations is described by Wenzel (Wenzel, Seasonal Trends in Vehicle 

Emissions 1999). In 2010 368,180 beam blocks produced 329,722 records (89.5 percent) 

containing at least valid carbon monoxide readings. Detailed data collection reports for 2009--

2010 data collection efforts can be seen in Appendix Table A-2 and Table A-3. 

Collected in the field data is compiled into a database. The data are transformed through a 

series of steps before it can be presented in a format that can be easily seen and analyzed. Figure 

3-12 demonstrates that path in what is called data reduction steps. Remote sensing starts with a 

collection of ‘beam blocks’. Beam blocks are physical crossings of the remote sensing beam. 

Those beam blocks are later examined for validity, and valid data are selected from them. Valid 

data are defined as a vehicle having at least one valid gas readings such as CO, HC, or NOx. 

Images for valid readings are then examined for existence of license plates. If the license plate is 

visible plate identification is recorded in the database. Visible license plates are then divided into 

two categories: state of Georgia license plates and out of state license plates. Georgia license 

plates are matched with the Georgia Registration database. Registration data allow extraction of 

the vehicle identification number (VIN). Those VINs are used as an input into VIN decoder 

software (developed by Eastern Research Group), which provides more detailed vehicle 

information. As shown in Figure 3-12, valid data for different sites ranges between 66% and 

99% of total beam blocks collected, with an average of about 87%. Readable license plates range 

from 56% to 89% with an average of 74%. Such a wide range is produced by various light 

conditions and geometries of road surface. State license plates on each site vary from 53% to 

85% of the collected beam blocks with an average of 71%. Nearly 85% of Georgia state license 

plates are matched to the Georgia registration database. Between 44% and 77% of original beam 
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blocks match to registration data. 73% of those matches are decoded by VIN decoder software. 

For each individual site, the range in relation to beam blocks is between 32% and 61% with an 

average of 45%. The reason for the low decode rate of the VIN decoder is because the version 

that is being used is outdated and does not decode well vehicles younger than 2006 model year. 

In a an absence of VIN data it is substituted by vehicle information data from other sources such 

as vehicle registration records or vehicle’s inspection and maintenance records. 

 

Figure 3-12 CAFÉ project data reduction flow 
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3.1.1.7 License Plate Entry 

 License plate entry was done by trained Georgia Tech Research Institute personnel 

familiar with the license plate type and trained with proper procedures for license plate editing to 

maximize matching with the Registration Database.  

 

 

 

Air Quality Group’s data entry staff has extensive knowledge and experience in data 

entry accumulated over more than 20 years of projects performed in and outside of the State of 

Georgia.  Correct recording of license plates has been found to significantly affect overall 

vehicle identification rates and the success of previous studies. 

Figure 3-13 Screenshot of license plate editing software. ESP Inc. 

Copyright  
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License plate entry was accomplished using digital imaging processing software (TagEdit 

4.01 developed by Remote Sensing Technologies, Inc.). A screenshot of the license plate entry 

screen is shown in Figure 3-13. 

To maximize license plate matching, types of Georgia license plates have been 

investigated and recorded, and images of Georgia license plate types were distributed to license 

plate entry staff.   

3.1.1.8 Quality Control / Quality Assurance 

The Quality Control and Quality Assurance plan include an array of quality control, 

quality assurance and maintenance procedures including, but not limited to, those procedures 

currently recommended by the equipment manufacturer, the U.S. EPA and the California Air 

Resources board.   

3.1.1.9 Gas Calibration  

In accordance with manufacturer specifications, calibrations using gas containing all 

measured compounds are performed at specified intervals before the start of measurements and 

every 90 minutes or less thereafter.  

3.1.1.10 Camera Settings 

After the initial positioning of the camera (Figure 3-14) during setup, the exposure 

settings are checked and fine-tuned on an as-needed basis. Alignment of the camera greatly 

depends on traffic speeds and light conditions. Therefore it has to be adjusted to accommodate 

changing conditions numerous times during data collection activities.  



 

 52 

 

Figure 3-14 Remote sensing camera 

3.1.1.11 Data Capture Rates 

To verify the functioning of the system, the Hit Rate Analysis function of the RSD software 

is utilized. Hit Rate Analysis displays statistical parameters of the remote emission data collected 

after the last calibration. This function applies the operator information on a quantity of valid 

records that the system has captured. This data can help to determine how the system is 

functioning. Below is the list of parameters included in Hit Rate Analysis: 

 Total Records – the number of vehicles that have passed through the system since last 

calibration 

 Valid Records – the number of valid readings captured 

 Invalid Gas – the number of records rejected because of invalid readings 
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 Suspect Gas – the number of records rejected because of gas readings that exceeded 

reasonable limits 

 Small Plume – the number of records rejected because of smaller than needed CO2 

content to determine an accurate reading 

 Data Capture – percent of valid emission tests 

 Invalid CO2 – the number of invalid readings 

 Invalid CO – the number of invalid readings  

 Invalid HC – the number of invalid readings 

 Invalid NOx – the number of invalid readings 

 CO above 3.0 % – the number of readings with CO > 3.0% 

 HC above 1000 ppm – the number of readings with HC > 1000 ppm 

 NOx above 2000 ppm – the number of readings with NOx  > 2000 ppm 

 Number of Rejected Speed and Acceleration Readings  

The Hit Rate Analysis allows for real time quality control of testing equipment. If the hit rate 

is extremely low it would suggest that equipment is not operating properly or the testing location 

does not produce a sufficient number of valid readings, which defined by measurements that 

have at least one valid exhaust components readings.    

3.1.1.12 Remote Sensing Calibration Audits 

During operation of the remote emission sensor, in addition to periodic calibration of the 

system, calibration audits are performed. Calibration audits are done every 90 minutes or sooner 

based on the time when instrument calibrations are performed. Calibration audits consist of 

flowing known gas mixture through the chamber inside of the remote sensing detector unit in 

operational vehicle measurement mode and comparing the results of those measurements of the 

concentrations of carbon monoxide, hydrocarbons, and nitrogen oxides, to stated gas 

concentration values of the calibration gas mixture. If calibration audit readings differ from 

readings on the gas cylinder, calibration is rejected and the system is recalibrated. 



 

 54 

 

3.1.1.13 Remote Sensing Measurement Database 

Upon completion of remote sensing measurements, a database containing date, time, site 

identification number, vehicle identification number, vehicle license plate number and state of 

origin, CO/ CO2/ HC/ NOx measurements, speed, acceleration, calculated vehicle specific 

power, and vehicle identification information is constructed. Additionally, site information 

calibrations are included in the database.  

3.1.1.14 License Plate Matching 

Remote Sensing data is matched to the Georgia Motor Vehicle Registration Database 

using the license plate data recorded during the sampling phase. Matched records are combined 

with remote sensing records to populate the database. That database is matched to the 

registration database of the State of Georgia and the following vehicle information is extracted: 

make, model, model year, fuel type; engine displacement, and gross vehicle weight rating 

(GVWR), county of registration, and mileage records.  

The Georgia Registration database is obtained by the Georgia Tech Research Institute on 

a quarterly basis. Remote sensing data is coupled to the Georgia Registration database records 

with an appropriate date. The date of measurement is checked against the date of purchase on 

registration records. If the date of purchase is later than the date of measurement, the result of a 

match is discarded and the license plate matched to the previous quarter.     

3.1.1.15 License Plate Match Rate Checks 

After the remote sensing data and Georgia registration database are matched, the 

resulting database is checked for data consistency. To check for matching consistency, a license 

plate match rate check is performed. The check consists of comparing daily percentages of 

matched records as a proportion of readable license plates. Measurement days that have license 
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plate match rates well below the match rate from other days are further checked for license plate 

entry or license plate matching errors. 

3.1.1.16 Random Visual License Plate Matching Check 

In addition to Match Rate Check, a random visual license plate check is utilized as well. 

It consists of visual validation of matched data by comparing pictures of a particular vehicle with 

matching records. Pictures of the identified vehicles are visually compared to registration records 

by comparing make, model, and color of the vehicles seen on the picture to records matched to 

the registration database. 

3.1.2 Georgia Registration Database 

The Georgia registration database includes vehicle information such as make, model, 

year, and VIN of the vehicle as well as the county code for county of registration.  

3.1.3 VIN Decoder  

VIN Decoder is software that can decode known VIN numbers. VINs provide more 

detailed information about the vehicle than the registration database, and includes make, model, 

year, emission control and fuel systems, as well as the weight of the vehicle. 

3.1.4 Inspection and Maintenance Data 

The inspection and maintenance database of the State of Georgia provides records of 

every transaction performed at emission stations. The I/M data provide detailed information 

generated during the test. Most notably it provides information about each test result and 

includes OBD fail codes, and if the vehicle failed I/M inspection.  

3.1.5 OBD II Code Data 

 The OBD code database was compiled from codes of individual makes obtained from 

OBD Codes online portal (http://www.obd-codes.com). This portal serves as a clearing house 

http://www.obd-codes.com/
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for OBD codes for various makes and models. Close to 5,000 codes both generic and 

manufacturer-specific were gathered into a database. 

 The OBDII codes consist of five characters: a letter and four numbers. The first character 

is a letter and identifies a system related to the trouble code 

 P - Powertrain  

 B - Body  

 C - Chassis  

 U - Undefined  

 The second character is a digit identifying whether the code is generic or manufacturer-

specific: 

 0 - Generic (this is the digit zero -- not the letter "O")  

 1 - Enhanced (manufacturer specific)  

 Third digit refers to the subsystem: 

 1 - Emission Management (Fuel or Air)  

 2 - Injector Circuit (Fuel or Air)  

 3 - Ignition or Misfire  

 4 - Emission Control  

 5 - Vehicle Speed & Idle Control  

 6 - Computer & Output Circuit  

 7 - Transmission  

 8 - Transmission  

 9 - SAE Reserved  

 0 - SAE Reserved  

 A fourth and fifth character refers to a particular problem. 
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3.1.6 Fuel Economy Data 

 The Fuel Economy data were compiled using www.fueleconomy.gov web resource 

operated by the U.S. EPA. Data from 1978 to 2010 was compiled from individual annual data 

files. Over 37,000 combinations of make, model, and year were assembled and formed the Fuel 

Economy database that is utilized in this analysis. Some useful information in this dataset 

includes city, highway, and combined miles per gallon fuel economy, EPA’s vehicle 

classification, vehicle’s engine displacement, number of cylinders, transmission type, and type of 

fuel used.  

3.2 Frequency of Testing 

To increase the efficiency of the emission inspection program, the frequencies of the test 

administered to vehicles can be manipulated based on the position of the vehicle on the scale 

from extra clean to gross polluting. The scale is based on the probability of failure based on the 

above-mentioned parameters. Data from all data sources mentioned previously formed an 

infrastructure for the data that is used to identify the probability of vehicle emission test failure.  

A derived fit model is used for estimation of the probability of failure for each vehicle. 

Based on failure probability distribution, vehicles will be placed into categories that will 

determine vehicle-testing frequency. The envisioned emission inspection program would test 

potentially clean vehicles less frequently and vehicles that are more likely to be high emitters 

more frequently. 

                                         , 

Where, K is an adjustment coefficient: 

 

   (                              ), 

Where, 

K < 1 for high emitting vehicles 

http://www.fueleconomy.gov/
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K > 1 for clean vehicles 

K = 1 average vehicles 

 

                              

  (                                                                      ) 

 When K is smaller than the one it will yield a smaller time between test. Conversely if K 

is greater than the one it would produce longer test frequencies.  

By changing frequencies of tests, but conducting a similar number of tests per year it 

would be possible to increase efficiency of the program. With the same amount of capital 

expenditure the emission inspection program will produce lower emissions. This research will 

calculate the benefits and emission reductions achieved using the proposed program. 
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4 PROPOSED PROGRAM BENEFIT ESTIMATIONS 

 To estimate the potential benefits of changing the time between test frequencies for 

vehicles with a high probability of passing or failing emission inspection, the  previously formed 

database was examined. In particular, two data sets including the Remote Sensing database for 

2010 and the Georgia Inspection and Maintenance database for 2010 were analyzed. A 2010 

emission test result and a date of emission inspection were added to emission inventory collected 

during the CAFÉ program. Conceptually, if the vehicle passed the emission inspection test, there 

should be no repairs made to the vehicle and therefore there should be no difference in emissions 

before and after the emission test.  Passing the emission inspection test means that no repairs 

have been done to a vehicle due to failure of the test. Alternatively if a vehicle at any time during 

2010 failed the emission test, it was deemed a failing vehicle even if the vehicle had passing 

results in subsequent emission tests. If vehicles failed emission inspection then the assumption is 

that they were repaired before they had a passing result and therefore some differences in 

emission should be observed. Based on those two basic premises, for this portion of analysis, 

vehicles were split into two groups: vehicles that passed the emission test in 2010 and vehicles 

that failed the test during 2010. The following sections describe the results of the analysis of 

those two groups. 

4.1 Passing Vehicles Before and After Emission Inspection Test 

 The vehicle population is broken into two groups: vehicles that passed a 2010 emission 

test and vehicles that failed a 2010 emission test. It is important to note that based on previous 

discussions, to avoid fuel enrichment that occurs at low and high VSPs shown in Figure 3-7, only 

vehicle measurements with a VSP range between 0 and 30 are selected for this analysis. A first 

group of vehicles that passed the emission inspection test in 2010 and did not fail emission test at 

any time during the 2010 calendar year was selected from the 2010 I/M database. Those vehicles 

were cross-matched to the 2010 CAFÉ remote sensing database. Matching records were selected 
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and represented in this section as vehicles that passed the 2010 I/M test. CO, HC, and NOx 

emissions for selected vehicles were placed in 30-day bins before and after emission inspection 

had taken place. In total, 90,452vehicles did not fail the I/M test and were captured by a vehicle 

remote emission sensor (CAFÉ Database) in 2010. Differences or similarities between groups 

can come from various factors: fleet composition, for example, can be a reason for differences in 

emissions. Newer vehicles produce fewer emissions than their older counterparts, therefore if 

one group has a vehicle population older than the other it can lead to differences in emission 

rates. As previously described, driving conditions had significant influence on vehicle emissions. 

Therefore, if driving conditions in one group are different from driving conditions in another 

group it can produce differences in emissions. Consequently, vehicles from ‘before’ and ‘after’ 

groups were analyzed against each other for similarities or differences in two main categories: 

vehicle composition and driving conditions. Driving conditions is an essential part of remote 

sensing since vehicle remote sensing is an open air experiment that collects data under normal 

driving conditions and lacks a laboratory-like controlled nature.  Sample comparisons must be 

made to prevent analysis of vastly different samples. Vehicle composition plays a very important 

role since newer and older vehicles have different emission inspection failure rates. Therefore, if 

one sample has a vehicle age distribution that is significantly different than the other, comparing 

the two groups may be problematic.  If the sample groups prove to be different, then the 

differences in emissions may not be due to vehicle’s emission but due to other factors; therefore 

vehicles from both ‘before’ and ‘after’ samples will be compared for differences and similarities 

in driving conditions and vehicle age.  

4.1.1 Sample description  

4.1.1.1 Vehicle Specific Power  

 Vehicle specific power is a very important characteristic for remote sensing. One 

drawback of vehicle remote emission sensing is that it is difficult to control. The car can 
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accelerate, cruise, or decelerate, and all of those conditions affect vehicle emissions, as 

demonstrated in Figure 3-7, Figure 3-8, and Figure 3-9. VSP is measuring load on the engine 

based on velocity and acceleration characteristics, and measuring the site’s geometric 

parameters. Inclusion of grade data in VSP calculations differentiates it from simply examining 

speed and acceleration profiles. If VSP distributions are comparable, then any differences or 

similarities between emission of vehicle groups are not due to driving conditions at the time of 

measurement but rather some other factors. 

 First, analysis of the VSP distribution of the whole sample was performed. VSP 

distribution centers on a VSP reading of 15 kW/Tonne (Figure 4-1), which is consistent with 

generally expected VSP from remote sensing, shown in Figure 2-6. Therefore, the conclusion 

can be made that enrichment of the fuel which occurs at low or high VSP did not occur. In other 

words, vehicles were driven under normal driving conditions. Additionally, VSP distribution 

appears to be normally distributed suggesting that there was no excessive sampling from any 

VSP ranges. Ideally, VSP distribution should resemble a normal distribution with a majority of 

readings located in and around the mean. VSP readings were limited by the range between 0 and 

30 arising from the discussion in section 2.3.4.  
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Figure 4-1 VSP Distribution of ‘before’ and ‘after’ emission test vehicle sample 

  

Summary statistics for the sample are provided in Table 4-1 shown below. It contains 

summary statistics for the VSP distribution of the whole ‘before’ and ‘after’ emission inspection 

sample. A VSP average of 2010 CAFÉ data collection is 15.14 kW/Tonne, which is consistent 

with ranges for VSP readings provided in Figure 2-6. 

Table 4-1 Vehicle Specific Power summary statistics of ‘before’ and ‘after’ emission test data 

sample 

Mean 15.14 

Standard Deviation 6.97 

Standard Error Mean 0.02 

Upper 95% Mean 15.18 

Lower 95% Mean 15.09 

Number of Samples 90,452 
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After concluding that vehicles in the sample were driven under normal driving conditions 

and there was no excessive sampling at low or high VSPs, the next step is to examine ‘before’ 

and ‘after’ emission test samples to insure validity of the comparison of the two samples. The 

hypothesis here is that if a difference between VSP distributions for both samples exist, that may 

be a reason for any differences in emission rates. Conversely, lack of statistical difference 

between the two samples will suggest that any difference in emissions is not due to driving 

conditions at the time of measurement. Figure 4-2 represents VSP distribution of ‘before’ 

emission test sample. Similar to the whole sample distribution, it is normally distributed around a 

VSP reading of 15 kW/Tonne.   

 

Figure 4-2 Vehicle Specific Power distribution of ‘before’ emission test sample 

  

 Table 4-2 shows summary statistics for the ‘before’ the sample. There were 41,853 

samples that match both remote sensing data and the Georgia Inspection and Maintenance 

database of 2010. The average VSP reading is 15.09 with a standard deviation of 6.96. 
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Table 4-2 Vehicle Specific Power summary statistics for ‘before’ emission test sample 

Mean 15.10 

Standard Deviation 6.96 

Standard Error Mean 0.03 

Upper 95% Mean 15.16 

Lower 95% Mean 15.03 

Number of Samples 41,853 

  

 The ‘after’ emission test sample follows suit of the ‘before’ sample. The VSP distribution 

of the ‘after’ sample is also normally distributed (Figure 4-3), having an average of 15.18 

kW/tonne with a standard deviation of 6.97 (Table 4-3). Both, ‘before’ and ‘after’ samples have 

distributions with similar shapes and the average and standard deviation readings.  

 

Figure 4-3 Vehicle Specific Power distribution for ‘after’ emission test sample 
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Table 4-3 Vehicle Specific Power summary statistics for ‘after’ emission test sample 

Mean 15.18 

Standard Deviation 6.97 

Standard Error Mean 0.03 

Upper 95% Mean 15.24 

Lower 95% Mean 15.12 

Number of Samples 47,809 

  

 To compare VSP distributions from the ‘before’ and ‘after’ samples a t-test for VSP 

distribution means was conducted. Based on the results of the t-test for VSP, the means of 

‘before’ and ‘after’ emission tests are of no significant statistical difference. Therefore any 

differences or similarities between the two samples will not be due to the way the vehicle was 

driven. If there is an emission difference it is not due to driving conditions at measurement, since 

VSP means are similar ‘before’ and ‘after’ the emission test. Likewise, if there is no difference in 

emissions between the two it is not due to different driving conditions at measurement; it is due 

to some other factor. The results of the t-test for VSP means can be seen in Table 4-4. 

 
 

Table 4-4 t-test of Vehicle Specific Power average for ‘before’ and ‘after’ emission test  

Difference -0.08652 

Std Err Dif 0.04663 

Upper CL Dif 0.00487 

Lower CL Dif -0.17791 

Confidence 0.95 

t Ratio -1.85564 

Degrees of Freedom 88123.17 

Prob > |t| 0.0635 

Prob > t 0.9682 

Prob < t 0.0318* 

 

4.1.1.2 Model Year Distribution of ‘Before’ and ‘After’ Emission test  

 The next step is to compare model year distributions for ‘before’ and ‘after’ samples. 

Differences between the two samples should not be statistically significant, otherwise any 



 

 66 

differences in emissions may be due to vehicle age composition and not a vehicle’s emissions 

before and after emission tests. The first three model years are excluded from analysis since they 

are not subject to emission inspection tests. The distribution for the sample including vehicles 

from both groups is shown in Figure 4-4. Summary statistics for the sample are provided in 

Table 4-5.  

Table 4-5 Summary statistics for sample model year distribution 

Mean 2002.02 

Standard Deviation 3.84 

Standard Error Mean 0.01 

Upper 95% Mean 2002.04 

Lower 95% Mean 2001.99 

Number of Samples 90,452 

 

The average vehicle being considered for analysis is approximately eight years old and 

has a model year of 2002. The majority of vehicles are newer model years with more than 30% 

of them between three and six years old. 
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Figure 4-4 Model year distribution for combined ‘before’ and ‘after’ emission test sample 

  The next step is to compare ‘before’ and ‘after’ samples to examine model year 

distributions for both samples individually. Model year distribution for before and after the 

emission inspection is shown in Table 4-6.    
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Figure 4-5 Model year distribution for ‘before’ and ‘after’ emission inspection samples 

Table 4-6 Summary statistics for ‘before’ and ‘after’ samples 

 Before After 

Mean 2001.81 2002.20 

Standard Deviation 3.72 3.93 

Standard Error Mean 0.02 0.02 

Upper 95% Mean 2001.85 2002.23 

Lower 95% Mean 2001.78 2002.16 

Number of Samples 41,853 47,809 

 

 Model year distribution for the ‘before’ sample is very similar to the whole sample; 

vehicles are slightly older than eight years, with a standard deviation of 3.7 years. Sample 

composition of the ‘after’ group is slightly different and has an average model year at slightly 

higher than 2002, which is slightly younger than eight years old with a standard deviation of 3.9 

years.    
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Vehicles are slightly older for the ‘before’ emission inspection sample. Even though the samples 

are different statistically, the difference is 0.38, which is about 5 months. It is highly unlikely 

that vehicle technology have changed during the 5 month period to have any impact vehicle 

emissions. Some vehicle technologies such as fuel injection versus carburation, or introduction 

of catalytic converters has an ability to significantly impact vehicle emission but none of this 

should have any impact on the vehicle fleet being analyzed. 

Table 4-7 t-test of model year for ‘Before’ and ‘After’ emission test groups 

Difference  -0.38569 

Std Err Dif 0.02555 

Upper CL Dif  -0.33560 

Lower CL Dif  -0.43577 

Confidence 0.95 

t Ratio  -15.0935 

Degrees of Freedom 89118.22 

Prob > |t| <.0001* 

Prob > t 1.0000 

Prob < t <.0001* 
 

 Based on the t-test (Table 4-7) there is an indication of a statistical difference. Thus we 

can conclude that the samples are statistically different. However, as mentioned before, the 

difference between them is about 5 months. Looking at the other evidence such as Figure 4-5 it is 

evident that those differences in age composition are minimal. 

4.1.1.3 Distribution of Manufacturer 

 There are 46 manufacturers that were identified. However, 56% of vehicles are coming 

from five car companies: Chevrolet, Ford, Honda, Nissan, and Toyota. Figure 4-6 presents the 

distribution of vehicle samples by the manufacturer. 
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Figure 4-6 Vehicle distributions by manufacturer 
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Figure 4-7 Vehicle make distribution for 'before’ and 'after' the test sample 
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 Examining the make-up of the fleet that was analyzed based on the make of the vehicle, 

no apparent bias is visible. Vehicle make fleet composition for ‘before’ and ‘after’ the emission 

test samples are very close to each other as shown in Figure 4-7. Therefore, any differences in 

vehicle emission for both groups will not likely be due to the vehicle make composition of those 

samples. 

 In addition to examining the distribution of vehicles by manufacturer, samples within 

manufacturer were investigated as well. A main emphasis of this analysis was to make sure that 

the distribution of ‘before’ and ‘after’ emission tests for each manufacturer was similar. If the 

distribution of vehicles for a particular manufacturer is different before and after the test, it can 

introduce bias and excessively sample some vehicles either before or after emission test. 

Figure A-1 in the appendix shows vehicle makes distributions for ‘before’ and ‘after’ 

emission inspection samples. Those distributions appear to be normally distributed to limit 

sampling certain manufacturers in the ‘before’ sample and certain manufacturers in the ‘after’ 

sample. Manufacturers with significant vehicle sample distributions in ‘before’ and ‘after’ 

emission tests look to be normally distributed; therefore there are a similar number of vehicles 

for major makes that were sampled before and after emission inspection.  

4.1.1.4 Odometer readings  

Another vehicle characteristic examined is vehicle use. It is not a secret that high mileage 

vehicles are more prone to failures than vehicles with fewer accumulated miles; therefore, if 

‘before’ and ‘after’ samples have different vehicle use profiles, then emission differences might 

be due to heavy vehicle use for one of the groups. To examine differences between odometer 

readings for ‘before’ and ‘after’ emission test groups the whole sample will be analyzed first, 

followed by analysis and statistical tests for each group of vehicles.   
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Figure 4-8 Distribution of odometer readings 

 

Odometer readings for the whole sample are shown in Figure 4-8. The majority of 

vehicles have odometer readings between 50,000 and 200,000 miles. 

Table 4-8 Summary statistics for odometer distribution 

Mean 127,138 

Standard Deviation 58,411 

Standard Error Mean 216 

Upper 95% Mean 127,561 

Lower 95% Mean 126,715 

Number of Samples 73,297 

 

Table 4-8 represents summary statistics for combined ‘before’ and ‘after’ emission test 

samples. The average vehicle in the sample has close to 127,000 miles with a standard deviation 

of 58,000 miles. 
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 Figure 4-9 Annual mileage from 2009 to 2010 by model year 

  

 Figure 4-9 represents annual mileage based on the vehicle’s model year distribution. 

Annual vehicle miles traveled were calculated using IM2009 and IM2010 datasets. Vehicles with 

extremely low or extremely high annual mileage were deemed to have errors and were excluded 

from analysis. Only vehicles between 0 and 60,000 miles per year were included. Figure 4-9 

represents the relationship between model year and annual mileage between 2009 and 2010. 

Based on the data, newer vehicles are driven more than their older counterparts. As vehicles age 

they travel less and less. For three year old vehicles, annual travel is about 20,000 miles per year 

and it falls to approximately 10,000 per year for vehicles that are twenty-three years old. This 
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represents a reduction of fifty percent over a twenty-year period. Older vehicles, 1985 – 1989, 

appear to have increased in annual miles traveled. This phenomenon can be due to the smaller 

sample size for older model years. Vehicles older than 1989 model year represent just 0.5% of 

the sample vehicle fleet. Increases in annual miles traveled by older vehicles can also indicate the 

survival effect. Older vehicles at the end of their useful life can undergo engine and transmission 

rebuilds and therefore with new drivetrains become more reliable and therefore driven more.  

  

Figure 4-10 Annual vehicle miles traveled range 

  

 A slightly different representation of the data is presented in Figure 4-10. Showing the 

range of annual VMTs for model years, it also shows where the majority of VMTs for a 

particular model year reside. For newer model year vehicles, the VMT range is from 0 to 60,000; 
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however, the majority of vehicles accumulated between 10,000 and 20,000 miles per year. For 

older vehicles, distribution within the range is more uniform,  In other words there is no one 

VMT bin group dominates the distribution. Smaller sample sizes for vehicles in 1985 – 1989 

model year group also contributes to fewer miles per year bin groups being present.  

 When comparing odometer distributions of model year groups for ‘before’ and ‘after’ 

samples they appear to be similar. The new vehicle model year groups have lower odometer 

totals. Odometer readings for older model years tend to congregate around higher numbers.  

 

Figure 4-11 Odometer distributions for ‘before’ and ‘after’ sample by model year groups 

  

Since the distributions are similar, there is no apparent bias in the sample associated with 

odometer readings.  
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 In conclusion, after analysis of the two samples of ‘before’ and ‘after’ emission tests for 

vehicles that passed the emission test and did not fail in calendar year of 2010, there is no 

difference between VSP distributions of both samples and there is no difference between 

odometer readings. There is a statistical difference between ages; however, in real terms it’s only 

4.5 months, which should not affect emission results. Therefore, any difference or similarities of 

‘before’ and ‘after’ samples will be due to emissions of the vehicle and not because of 

extraneous factors such as driving conditions at the time of measurement, vehicle age, or vehicle 

use. 

4.1.2 Before and After Emission Test Emission Differences 

 This section will examine variations in carbon monoxide, hydrocarbons, and nitrogen 

oxides emissions for ‘before’ and ‘after’ samples for vehicles that did not fail the emission 

inspection test in calendar year 2010. The hypothesis for those vehicles is that, looking at remote 

sensing measurements of carbon monoxide, hydrocarbon, and nitrogen oxides, no or minimal 

differences between vehicle emissions before and after I/M testing should be observed. One 

would expect that if the vehicles were not repaired, since they operated normally while passing 

an emission test, then their emissions should not change. Based on the analysis in the previous 

section, all the differences or similarities in vehicle emission will be due to vehicle emissions and 

not due to driving conditions, model year, or odometer readings. To compare ‘before’ and ‘after’ 

samples, emission data were placed in 30-day bins and plotted. Negative days values represent 

readings taken ‘before’ emission inspection samples, and positive days represent readings taken 

‘after’ emission inspections samples.  

In addition to comparing samples from before and after emission inspection for vehicles 

that passed the emission inspection test done in the previous section day bins were also 

compared to each other for data variability. Error! Reference source not found. represents 

chart displaying VSP readings based on day bins. To promote a valid comparison for the day 
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bins VSP readings should remain steady throughout the range of the day bins. With the exception 

of a few bins VSP readings for all the bins are very consistent between 14 and 16 kW/Tonne. 

Minimal difference demonstrate that there was no effect of driving conditions at the time of 

measurement on different bins. 

 
Figure 4-12 VSP vs days before and after emission inspection test for vehicles that did not fail 

the emission inspection test 

Next model year distribution of bin range was analyzed. Hypothesis for this analysis is 

that vehicle model year composition should be similar for all bins. Looking at the Figure 4-13 it 

is indeed seems to be the case. The before emission inspection sample has model years just 
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below year 2002 and the after emission inspection sample has model years just over 2002 model 

year. 

 

 

 
Figure 4-13 Model year vs days before and after emission inspection test for vehicles that did not 

fail the emission inspection test 

 And finally accumulated odometer reading for the bin range was compared. For the 

before emission inspection bins odometer readings appears to be slightly higher that for the after 

emission inspection sample but it is steady for bins in two samples. Differences for before and 
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after emission inspection are not significant and should not affect emission rates of those 

samples. Figure 4-14 shows odometer readings based on the day bins. 

 

 

 

 
Figure 4-14 Odometer vs days before and after emission inspection test for vehicles that did not 

fail the emission inspection test 

 

Figure 4-15 represents carbon monoxide CAFÉ measurements before and after emission 

inspection. Examination of Figure 4-15 shows no difference in the intercept values for CO 

concentrations before and after an I/M test and very similar trend-line slope characteristics. The 

trend-lines before and after emission tests is identical. These observations suggest that there is no 

difference between CO emissions for vehicles before and after emission tests. Vehicles that 
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passed the emission inspection test most likely were properly operated vehicles and did not 

require repairs in order to pass emission inspection and therefore the CO characteristics of those 

vehicles did not change.  

 

Figure 4-15 CO Measurements days before and after emission test for vehicles that did not fail 

the emission inspection test 

 Hydrocarbon measurements are similar to carbon monoxide characteristics. The intercept 

before the emission test is 29 ppm HC and after the emission test the intercept is 28 ppm HC. 

The slope of the trend-line before the emission test is slightly positive and after the emission test 

is slightly negative. However, differences between them are not significant; therefore, we can 

conclude that since significant differences cannot be observed, the two vehicle populations 

behave similarly before and after the emission inspection test. 
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Figure 4-16 HC days before and after emission test for vehicles that did not fail the emission 

inspection test 

 Nitrogen oxides also did not display an appreciable difference before and after emission 

inspections. The intercept of both trend-lines were very similar. The NOx reading before the 

emission inspection intercept was 208.47 ppm and after the emission inspection it was 204.33 

ppm. Even though the ‘before’ emission test trend-line slope is slightly negative and, the ‘after’ 

emission test is slightly positive, variances between them are not very significant; therefore the 

conclusion can be made that ‘before’ and ‘after’ emission test vehicles exhibited similar 

behavior, which would be an expected result if vehicles were not repaired.        
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Figure 4-17 NOx days before and after emission test for vehicles that did not fail the emission 

inspection test 

 Figure 4-18 shows the histogram of the number of vehicles per bin for CO, HC, and 

NOx. Bins with a low number of vehicles were not included in the analysis because of 

significantly larger error when compared to other bins. 
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Figure 4-18  Histogram of number of vehicles per bin before and after emission test for vehicles 

that did not fail the emission inspection test 

 

 Figure 4-18 shows the distribution of the number of days per bin in the pyramid shape. 

This shape is caused by including only a single year of measurements and emission test results 

the analysis. The pyramid shape is due to limited opportunities to capture vehicles in high value 

bins either positive or negative. For example, to capture vehicles in the 330 – 360 day's bin, 

those vehicles would have to be measured in January. Conversely, vehicles from the (-330) – (-

360) bin could have been measured only in December, whereas bins closer to 0 could have been 

measured at any time. Therefore there are more vehicles located in bins around 0 than in high 

value bins.  

 To check if using single-year measurements and emission test results was the cause of the 

pyramid shape, an additional year (2009) was added to the number of vehicles in the bin 

calculations. Since only a prior-to-analysis year of measurements was added, only negative bins 
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are affected. Positive bins would only be affected if 2011 emission results were added. Figure 

4-19 shows the results of that analysis. As evident by the chart, the pyramid shape goes away 

when an additional year was added to the analysis.  

 

 

Figure 4-19 Number of vehicles in day bins: addition of multi-year emission results for the single 

year before and after emission test for vehicles that did not fail the emission inspection test 

 Therefore, the pyramid shape was caused by use of a single year of data and would be 

treated as normal in the following analysis.  

4.1.2.1 Passing Vehicles Sample Conclusion 

Passing vehicles from ‘before’ and ‘after’ samples exhibited similar sample vehicle 

specific power, model year, vehicle make distribution, and odometer readings. In addition, two 

sample groups that passed emission tests produced similar results for carbon monoxide, 

hydrocarbons, and nitrogen oxides concentration. As expected, since vehicles passed emission 
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tests and were not repaired they did not produce large emission variations before and after 

emission test measurements.   

4.2 Vehicles ‘Before’ and ‘After’ Repair 

4.2.1 ‘Before’ and ‘After’ Repair Sample Evaluation 

 The following analysis is based on a group of vehicles that failed emission tests in 2010 

and had a passing test in the same year. Those vehicles are represented in this analysis as ‘failed 

and repaired’ vehicles. This group of vehicles failed a test, then were repaired and passed an 

emission inspection test. Analysis of this group follows a similar methodology to the group of 

vehicles that did not fail the emission tests, with only a slight difference. Since vehicles in this 

group failed and were presumably repaired before they passed an emission inspection test, the 

date of the test signifies a repair date.  Days between remote sensing measurement and the 

passing of the emission test is constituted as the days before and after vehicle repair. In all 9,711 

vehicles failed emission tests in 2010 then passed a test and were captured by vehicle remote 

emission sensing. Similarly to vehicles from the ‘before’ and ‘after’ emission test groups, 

differences between ‘before’ and ‘after’ samples will need to be established.  Those similarities 

or differences can manifest themselves as driving conditions and/or vehicle fleet composition or 

vehicle use. Therefore model year distribution for before and after repair as well as fleet 

composition, differences in VSP distributions, and odometer readings are studied to compare 

those two groups.  

4.2.1.1 VSP ‘Before’ and ‘After’ Repair Sample Differences 

The VSP distribution of the ‘before’ and ‘after’ repair vehicles is presented in Figure 

4-20.  
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Figure 4-20 Vehicle specific power distribution of failed-and-repaired vehicles for vehicles that 

failed the emission inspection test 

Similar to previous analyses, VSP readings were limited to the range between 0 – 30 

kW/Tonne to avoid fuel enrichment.  

Table 4-9 Vehicle Specific Power summary statistics for failed-and-repaired vehicles for vehicles 

that did not fail the emission inspection test 

Mean 14.64 

Standard Deviation 6.97 

Standard Error Mean 0.07 

Upper 95% Mean 14.78 

Lower 95% Mean 14.50 

Number of Samples 9,711 

 

 The VSP distribution has a mean of 14.6 kW/Tonne with a standard deviation of 6.96, 

which are expected values for this kind of analysis. It is important to examine the VSP 

distribution profile to guard against vehicles that may have clean emission readings but, due to 
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extremely high or low VSPs, produce high emission readings. The next step is to compare VSP 

distribution of passing vehicles to VSP distribution of failed and repaired vehicles. The average 

for the passing vehicle group was 15.1 kW/Tonne with a standard deviation of 6.97. Table 4-10 

contains summary statistics for VSP distribution. A VSP average of 2010 CAFÉ data collection 

is 15.1 kW/Tonne, which is consistent with the ranges for VSP readings provided in Figure 2-6. 

The average for failed-and-repaired vehicles was 14.6 kW/Tonne with a standard 

deviation of 6.96. Comparing those two means and standard deviations, we can conclude that 

there is no statistical difference between VSP distributions of passing and failing/repaired 

vehicles. In other words, driving conditions that in large degree is being measured by VSP was 

similar in both samples.  

Kolmogorov-Smirnov test between two vehicle populations, vehicle before-and-after the 

repair and vehicles before and after the emission test, shows statistical difference between two 

distributions. D-value in for this test is 0.0001 which is smaller than α = 0.05, therefore null 

hypothesis of equal distributions is rejected. However, in practice the difference between means 

for both distributions is minimal. In addition, VSP mean is higher for vehicles that passed 

emission inspection; therefore, if differences in emission rates between vehicle populations of 

vehicles that passed the emission test and vehicles that failed the emission test exist it would not 

be due to driving conditions. 

 Now it is established that there is minimal difference in VSP distribution between 

‘passing’ and ‘failed and repaired’ vehicles, the next step is to compare populations within a 

sample of ‘failed and repaired’ vehicles for differences in driving conditions, as well as model 

year distribution and odometer readings, and vehicle make distributions for ‘before’ and ‘after’ 

repair groups. 

 For the ‘before’ repair sample, the VSP distribution is centered at VSP of 14.50 

kW/Tonne. It is normally distributed with a standard deviation of 6.93. 
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Figure 4-21 Vehicle specific power distribution for ‘before’ repair sample for vehicles that failed 

the emission inspection test 

Table 4-10 Summary statistics for Vehicle Specific Power of ‘before’ sample for vehicles that 

failed the emission inspection test 

Mean 14.50 

Standard Deviation 6.93 

Standard Error Mean 0.10 

Upper 95% Mean 14.69 

Lower 95% Mean 14.30 

Number of Samples 4,859 

 

For the ‘after’ sample for failing and repaired vehicles, the VSP distribution has a mean 

of 14.8 kW/Tonne with a standard deviation of 7 kW/Tonne. 
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Figure 4-22 Vehicle specific power distribution for ‘after’ repair sample for vehicles that failed 

the emission inspection test 

Table 4-11 Summary statistics for Vehicle Specific Power of ‘after’ repair sample for vehicles 

that failed the emission inspection test 

Mean 14.79 

Standard Deviation 7.00 

Standard Error Mean 0.10 

Upper 95% Mean 14.98 

Lower 95% Mean 14.59 

Number of Samples 4,852 

 

To test if the distributions of before and after the repair VSP sample are similar non-

parametric Kolmogorov-Smirnov two-sample test is used. The hypothesis Ho: that two sample 

populations have the same distribution. The D - value of the test is 0.1021 is greater than α = 
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0.05, which is a value of level of significance. The test accepts the null hypothesis therefore two 

sample populations have the same distribution.   

Table 4-12 Kolmogorov-Smirnov test for VSP distributions of before and after emission 

inspection test vehicle samples 

 

 

 

 

 

 

 

4.2.1.2 ‘Before-and-After’ Repair, Model Year Sample Differences  

 The next step is to compare model year distribution to ensure that samples that are being 

compared are similar to each other. Figure 4-24 represents the model year distribution for 

‘before’ and ‘after’ repair vehicle samples. As expected, the vehicle sample is older than group f 

KS KSa D=max|F1-F2| D-value 

0.0124015 1.2195792 0.0248032 0.1021 

Figure 4-23 Cumulative probability density function of before and after 

emission test vehicle samples 
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vehicles that did not fail emission test from before-and-after emission test samples (Table 4-5). 

The vehicle group that did not fail emission inspection was about two years younger than 

vehicles that failed emission tests. ‘Before’ and ‘after’ repair vehicles are on average two years 

older than vehicles from before and after emission tests.  A detailed description of sample model 

year statistics is represented in for vehicles that failed the emission inspection test 

 

 

Table 4-13. 

   

 

Figure 4-24 Model year distribution of ‘before-and-after’ repair sample for vehicles that failed 

the emission inspection test 
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Table 4-13 Summary statistics for model year distribution of ‘before’ and ‘after’ repair sample 

for vehicles that did not fail the emission inspection test 

Mean 1999.95 

Standard Deviation 4.20 

Standard Error Mean 0.05 

Upper 95% Mean 2000.1 

Lower 95% Mean 1999.86 

Number of Samples 7,698 

  

 To compare the ‘before’ and ‘after’ repair groups, their respective model year 

distributions were plotted and analyzed. Figure 4-25 represents model year distributions for 

‘before’ and ‘after’ repair samples and their respective CDF functions. 
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Figure 4-25 Model year distribution and CDF function of ‘before-and-after’ repair sample for 

vehicles that failed the emission inspection test 

 

 

Table 4-14 Summary statistics for model year distribution of ‘before-and-after’ repair sample for 

vehicles that failed the emission inspection test 

 Before After 

Mean 2000.01 1999.89 

Standard Deviation 4.25 4.14 

Standard Error Mean 0.07 0.07 

Upper 95% Mean 2000.14 2000.03 

Lower 95% Mean 1999.88 1999.76 

Number of Samples 4,192 3,506 

 

 

 On close examination, vehicle model year distribution appears to be similar, which 

implies that the age distribution for both ‘before’ and ‘after’ samples are very close in nature.  
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To test the underlying model year distribution for before and after repair sample 

Kolmogorov-Smirnov test is performed. The null hypothesis for the testing is that two 

distributions are the same. Based on the test and resulting D-value of 0.2635 we can’t reject null 

hypothesis therefore two distributions are the same. 

 

Table 4-15 Kolmogorov-Smirnov test for VSP distributions of before and after repair vehicle 

samples 

KS KSa D=max|F1-F2| D-value 

0.0114904 1.0061162 0.0230651 0.2635 

 

 
Figure 4-26 Cumulative probability density function of before and after the repair vehicle 

samples 

4.2.1.3 ‘Before’ and ‘After’ Repair Make Sample Differences 

To ensure that none of the vehicle makes are over-sampled for this analysis, distribution 

of vehicles by make was plotted. As seen in Figure 4-27, make distribution closely follows that 

of the sample for ‘before’ and ‘after’ emission test vehicles. Five makes: Chevrolet, Ford, 
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Honda, Nissan, and Toyota have major representation. Roughly they represent 56% of the 

sample, which is very similar to ‘before’ and ‘after’ emission test samples.  

 

Figure 4-27 Vehicle make distribution of ‘before’ and ‘after’ repair sample for vehicles that 

failed the emission inspection test 

  

 After concluding that the vehicle sample is representative, the next step is to examine 

‘before’ and ‘after’ repair distributions. The assumption is that equal sample distributions of 

vehicle makes should be shown before and after repair. Figure 4-28 represents those 

distributions. It appears that distributions for both vehicle groups are similar. In other words 

‘before’ and ‘after’ samples have equal representation in all major manufacturer brands.  

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0%

2%

4%

6%

8%

10%

12%

14%

16%
F

O
R

D

C
H

E
V

T
O

Y
T

H
O

N
D

N
IS

S

D
O

D
G

C
H

R
Y

L
E

X
S

JE
E

P

G
M

C

P
O

N
T

B
M

W

M
A

Z
D

M
E

R
Z

M
IT

S

A
C

U
R

M
E

R
C

V
O

L
K

S
T

R
N

V
O

L
V

B
U

IC

IN
F

I

C
A

D
I

O
L

D
S

L
IN

C

K
IA

H
Y

U
N

IS
U

P
L

Y
M

A
U

D
I

JA
G

U

G
E

O

S
A

A

L
N

D
R

S
U

Z
I

C
D

F
 

P
er

ce
n

t 

Vehicle Makes 

Fraction of Vehicles CDF



 

 97 

  

Figure 4-28 Vehicle make distribution separated by 'before' and 'after' repair groups for vehicles 

that failed the emission inspection test 

  

 More analysis of the data samples can be found in Appendix Figure A-4 and Figure A-5. 

In addition to vehicle make distribution by day, VSP profiles based on days before and after 

repair were plotted (Figure A-5).   Those profiles indicate random distributions for days before 

and after repair. 
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 Judging by the vehicle makes distributions for ‘before’ and ‘after’ repair samples, we can 

conclude that there is no difference in fleet vehicle make makeup. Therefore, any differences in 

emission could not be attributed to vehicle make.  

 

4.2.1.4 ‘Before’ and ‘After’ Repair Odometer Differences  

 Miles per year follows very closely what was shown in a ‘before’ and ‘after’ emission 

test sample. It indicates that newer vehicles are driven farther on an annual basis than older 

vehicles. Vehicle mileage decreases with vehicle age by about 2,000 miles.   

 
Figure 4-29 Annual miles traveled ‘before-and-after’ repair sample for vehicles that failed the 

emission inspection test 
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 Figure 4-30 represents the odometer distribution for ‘before’ and ‘after’ repair samples 

divided into model year groups. Distributions for all vehicle groups look similar. Therefore there 

is no important difference between age groups for ‘before’ and ‘after’ samples. 

 

 

Figure 4-30 Odometer distributions for ‘before’ and ‘after’ repair by model year groups for 

vehicles that failed the emission inspection test 

  

Based on analysis of odometer readings for ‘before’ and ‘after’ repairing vehicles, there 

is no observable difference between the ‘before’ and ‘after’ repair groups. Therefore any 
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differences in emissions in both groups would not be due to vehicles having higher odometer 

readings in one group that the other.  

4.2.1.5 Sample Differences Between Bins for Failed and Repaired Vehicles 

To analyze differences between emission rates for vehicles before and after the repair two 

datasets: 1) Inspection and Maintenance database, 2) remote emission sensing formed a basis for 

it. Based on the date of vehicle remote emission sensing measurement and test and repair date 

the data was grouped in 30 day bins. The bins represent the time between remote emission 

sensing and time of before and after emission test failure and repair. The bins were compared to 

each other to make sure that they are consistent and there are no significant differences between 

the bins that might affect emission rates.  

Bins were formed starting one year prior to the emission test failure and span to one year 

after the vehicle repair. Bin 1 represent vehicles that were captured by the remote emission 

sensing 330-360 days prior to vehicle emission inspection fail. Bin 2 had vehicles from 300 – 

330 days prior to emission test failure and so on. There is a total of 24 bins: 12 bins for the time 

prior to emission inspection and 12 bin after vehicle repair, bin 24 representing vehicles 330 – 

360 days after vehicle was repaired and passed emission inspection test. In total, 9,711 vehicles 

failed an emission test then passed a test and were captured by vehicle remote emission sensing.    

The difference between bins can indicate/explain the change of emission rate, therefore it 

is important to compare bins against each other.  Figure 4-31 represent odometer reading 

dependence on bins. It is evident that with the exception of a few low number bins and a couple 

of higher number bins odometer reading are very consistent across the bin range. 
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Figure 4-31 Odometer readings by day bins for failed and repaired vehicle samples  

Next VSP distribution was compared across the bin range. VSP distribution is also being 

consistent throughout the bin range and it stays between 14 and 16 kW/Tonne. VSP versus day 

bins plot can be seen in Figure 4-32. 
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Figure 4-32 VSP readings for day bin for failed and repaired vehicle sample 

And finally model year composition for the bins was examined as well. With the 

exception of very low and high number bins for the rest of the data model year hovers around the 

year 2000. Figure 4-33 represents a plot of model year based on days bin. 
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Figure 4-33 Model year for day bins for failed and repaired vehicle sample  

4.2.1.6 Failing Vehicles Sample differences Conclusion  

 The hypothesis for this analysis was that some differences in before and after vehicle 

repair should be observed indicating that vehicles with high emissions were repaired and 

therefore reduced pollutants discharged to the atmosphere. After careful examination of several 

variables such as VSP distributions, model year distributions, odometer readings distribution, 

and miles per year distribution for before and after the repair samples as well as analysis of 

binned data all differences that might be observed during analysis will be due to emission 
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controls of the vehicles and not caused by differences in vehicle fleet age, make,VSP readings, or 

odometer readings.  

4.2.2 ‘Before and ‘After’ Repair Group Emission Differences 

 To calculate differences between vehicles in ‘before’ and ‘after’ repair groups, all 

vehicles were placed in 30-day bins. The bins represent days before and after the repair. Bins for 

‘before’ and ‘after’ days were assigned to each vehicle and carbon monoxide, hydrocarbons, and 

nitrogen oxides were plotted against those bins.  

 In total, 9,711 vehicles failed an emission test then passed a test and were captured by 

vehicle remote emission sensing.    

 Vehicle selection for the following analysis consisted of vehicle remote emission data 

collected during the 2010 calendar year at locations around the Atlanta Metro Area. VSP for 

those vehicles were limited to the range between 0 and 30. Data used for the analysis is from the 

CAFÉ database for 2010 and the I/M database for 2010. 

 To repair a vehicle it took 21 days on average, with the median of almost 6 days with 

high standard deviation suggesting that some vehicles had an extremely high number of days 

between the two tests (Table 4-16). The following table shows descriptive statistics for the 

sample data. The distribution of days to repair is shown in Figure 4-34. 
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Figure 4-34 distribution of days to repair for failed vehicles 

 

Table 4-16 Summary statistics for the repair time duration for vehicles that failed the emission 

inspection test 

Mean 21.55 

Standard Error 0.53 

Median 5.97 

Mode 1.14 

Standard Deviation 52.52 

Sample Variance 2758.13 

Kurtosis 20.14 

Skewness 4.38 

Range 361.96 

Minimum 0.00 

Maximum 361.96 

Sum 209312.50 

Count 9,712 
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The following chart represents the carbon monoxide of vehicles that passed the I/M 2010 

inspection and were captured by remote sensing. Carbon monoxide measurements for before and 

after the repair vehicle sample are shown in Figure 4-35. CO emission is steadily rising. At the 

time of the repair, CO concentration drops by nearly 38 percent from 0.31% to 0.19% CO and 

then begins to rise again, demonstrating the effect of a repair on a vehicle. What can be seen here 

is that vehicles are getting dirtier right before repair and getting cleaner after the repair has 

happened. After initial repairs, vehicles are continuing to get higher CO emissions practically at 

the same pace as before the repair, which may raise questions about the effectiveness of those 

repairs. 

 

Figure 4-35 CO measurements ‘before-and-after’ repair for vehicles that failed the emission 

inspection test 

  

 If the pace of growth of CO can be slowed, then we would get benefits and a reduction in 

emission inventory. However, the focus of this research is on catching vehicles sooner than their 
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scheduled emission test and thus reducing harmful emissions. If vehicles can be tested sooner, 

we can shorten a time that vehicle is driving with higher than normal emissions, therefore 

reducing those emissions. 

 HC measurements of vehicles before and after repair are demonstrated in Figure 4-36. 

Before repair has occurred, HC concentration has grown gradually. At the time of repair, the HC 

level drops by 13% from 54 ppm to 47 ppm and then continues to grow at a slower rate than 

before the repair. 

 

Figure 4-36 HC measurements ‘before’ and ‘after’ repair for vehicles that failed the emission 

inspection test 

  

 Vehicles are getting dirtier before repair and reduce their HC emissions after the repair 

has occurred. After repair the vehicles are continuing to get dirtier just like CO, but at a slower 

pace. 
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 The NOx behaves slightly differently.  Since NOx emissions depend on engine 

temperature (36), then reduction of NOx would indicate that the engine temperature is falling, 

which is consistent with CO increases.  When CO emissions increase, the vehicle’s engine is 

running rich fuel that does not burn completely, which in turn brings down the temperature of the 

engine. At the time of repair, however, NOx emissions drop by 5.7% and after the repair rise 

slightly, which once again is consistent with slower growth rates of CO.  
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Figure 4-37 NOx measurements ‘before’ and ‘after’ repair for vehicles that failed the emission 

inspection test 

 Below is the distribution of vehicles with CO, HC, NOx emission before and after 

repairs. Although after the repair vehicles are slightly skewed toward the bins with a smaller 

number of days, there is no significant difference between these two samples. Figure 4-38 

represents plot for number of vehicles in day bins for before and after vehicle repair for vehicles 

that failed emission inspection test. 
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Figure 4-38  Histogram of number of vehicles per bin ‘before’ and ‘after’ repair for vehicles that 

failed the emission inspection test 

4.2.3 Conclusion 

 Vehicles from the ‘before’ and ‘after’ repair groups exhibited differences in before and 

after repair emission rates, therefore the conclusion can be established that there is a potential 

benefit that can be derived by testing potentially failing vehicles before their scheduled 

emissions test. Doing so will reduce the amount of harmful emissions in the atmosphere. Slopes 

in Figure 4-35, Figure 4-36, and Figure 4-37 will be used to calculate CO, HC, and NOx 

emission reductions.  
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5 MODELING FOR PROBABILITY OF FAILURE 

 To estimate the probability of failure, a nominal logistic model with logit treatment was 

applied. Numerous variables were introduced in the model including vehicle emission reading 

obtained by the remote emission sensor including CO, HC, and NOx; vehicle make; vehicle 

model year; an odometer reading; the length of ownership; original owner; displacement 

recoded; emission test result from previous (2009), and annual mileage.  This section examines 

vehicle characteristics that are used as potential variables to predict probability of failure. From 

117,294 vehicles, 98,573 vehicles had VSP readings between 0 and 30 and they were selected to 

be entered into the model.   

5.1 Model Variables  

5.1.1 Carbon Monoxide Concentration 

Carbon monoxide concentration readings were measured during the 2010 remote sensing 

measurements in the Atlanta Metro Area for CAFÉ projects. There are 98,573 valid CO 

measurements. Average carbon monoxide measurements during this time were 0.121% with a 

standard deviation of 0.431% (Table 5-1). A distribution of CO concentrations is shown in 

Figure 5-1. 
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Figure 5-1 Distribution of carbon monoxide concentration 

  

 Table 5-1 represents summary statistics for distribution of carbon monoxide 

concentration. 

Table 5-1 Summary statistics for carbon monoxide concentration 

Mean 0.12 

Standard Deviation 0.43 

Standard Error Mean 0.00137 

Upper 95% Mean 0.12 

Lower 95% Mean 0.12 

Number of Samples 98,573 

  

Figure 5-2 plots carbon monoxide concentration versus model year. It is evident that as 

vehicles get older, carbon monoxide concentration increases. After the 1986 model year, the 

carbon monoxide concentration decreases. That can be a product of several factors. First there 

are relatively few vehicles and thus very large standard errors.  Another factor that may 
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contribute to lower readings is the “survival effect.” Survival effect refers to vehicles that 

because of their age, become inoperable and have to be rebuilt. Those rebuilds include rebuilding 

of engines, transmissions, and emission control systems. 

 

Figure 5-2 Carbon monoxide concentrations vs. model year 

  

Since there is a clear relationship between vehicle age and CO concentration, this 

variable should be an explanation for vehicle emission test failure. 

In addition to the relationship between carbon monoxide and the age of the vehicle there 

is a relationship between carbon monoxide measurements and vehicle emission inspection failure 

rates. That relationship is illustrated in Figure 5-3. This figure is based on carbon monoxide 

measurements obtained by remote emission sensing and failure rates from 2010 inspection and 
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maintenance database. As carbon monoxide concentration increases so do the emission 

inspection failure rate. Since this relationship exists carbon monoxide might be a variable that 

partially predicts probability of failure. 

 

Figure 5-3 Emission test failure rate vs vehicle emission remote sensing carbon monoxide 

reading 

5.1.2 Hydrocarbons 

 HC concentrations were measured by vehicle remote emission sensors during 2010 

measurements in the Atlanta Metro Area for the CAFÉ project. The current dataset contains 

97,855 valid HC measurements. They average 28.03 ppm with a standard deviation of 93.79 

ppm. Figure 5-4 represents the distribution of HC concentrations. 
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Figure 5-4 Distribution of HC concentration 

 Table 52 presents a summary of HC statistics. Average HC is 28.03 ppm with a standard 

deviation of 93.79 ppm.  

Table 5-2 HC summary statistics 

Mean 28.03 

Standard Deviation 93.79 

Standard Error Mean 0.30 

Upper 95% Mean 28.62 

Lower 95% Mean 27.44 

Number of Samples 97,855 

  

 Similar to carbon monoxide, hydrocarbon concentration increases as vehicles age. The 

first several model years do not have a lot of change. However, for vehicles eight years and 

older, changes occur much faster. By the time vehicles reach 24-25 years old, their emissions 

increase 7 fold.  Figure 5-5 illustrates the HC concentration distribution by model year.  
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Figure 5-5 Distribution of HC concentration vs. model year 

In addition to showing deterioration of vehicle’s emission ass vehicles age hydrocarbons 

have also shown the relationship to failure rates. Figure 5-6 shows that as vehicle’s hydrocarbon 

emissions are increasing so do the vehicle emission inspection failure rates. Hydrocarbon 

behaves similarly to carbon monoxide. Coliniarity of carbon monoxide and hydrocarbons will be 

examined in the following sections.   
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Figure 5-6 Emission test failure rate vs vehicle emission remote sensing hydrocarbon readings 

5.1.3 Nitrogen Oxides 

 The data set used for modeling in this research contains 89,419 valid nitrogen oxide 

measurements. All of them were collected by remote emission sensors for the CAFÉ project in 

2010. The average NOx concentration is roughly 236 ppm with a standard deviation of 519 ppm 

(Table 5-3).  Figure 5-7 represents the NOx concentration distribution. 
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Figure 5-7 Distribution of NOx concentration 

  

Table 5-3 NOx distribution summary statistics 

Mean 235.78 

Std Dev 518.74 

Std Err Mean 1.73 

Upper 95% Mean 239.18 

Lower 95% Mean 232.38 

Number of Samples 89,419 
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Figure 5-8 Distribution of NOx concentration by model year 

 

 Nitrogen oxide follows the trend set by carbon monoxide and hydrocarbons. As vehicles 

age, NOx concentration deteriorates as well. One interesting observation is that NOx starts to 

deteriorate faster than either CO or HC. For CO and HC, the first eight model years were very 

similar to each other; in the case of NOx, during the first six model years NOx does not change 

much; however, after that it starts to deteriorate.  

 Similar to carbon monoxide and hydrocarbon remote sensing measurements of nitrogen 

oxides also can indicate vehicle emission testing failure. As remote sensing measurements of 

nitrogen oxide increase the emission inspection failure rate increases as well. The relationship 
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between remote sensing measurements of nitrogen oxides and emission test failure rate is shown 

in Figure 5-9.     

 

Figure 5-9 Emission test failure rate vs vehicle emission remote sensing nitrogen oxides 

readings 
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5.1.4 Make 

 Vehicle make information is used in this section to describe and compare vehicle 

samples. It is not however the variable that is being used in the modeling of probability of 

vehicle’s emission inspection test failure. Vehicle make distribution for the data used for 

modeling is similar to description provided in ‘before’ and ‘after’ emission inspection and 

‘before’ and ‘after’ repair sample examination since it practically combines the two samples for 

passing and failed vehicles. 

Figure 5-10 Make distribution 

  

 The majority of vehicles is produced by five manufacturers: Chevrolet, Ford, Honda, 

Nissan, and Toyota. 
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5.1.5 Model Year 

 Although 2010 remote sensing data is used for this research, the first three model years 

are not present in the data sample. As shown in Figure 5-11, a significant number of vehicles 

first show up as 2007 models. This is due to Georgia emission inspection law that exempts newer 

vehicles from emission testing. The first three model years do not have to be tested to obtain 

their annual registration. The model year distribution is skewed toward newer vehicles. The 

majority of vehicles in the sample are between three and eight years old.   

 

Figure 5-11 Model year distribution  

 The average vehicle in the sample is a 2002 model year with a standard deviation of 3.91 

years.  
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Table 5-4 Summary Statistics for Model Year Distribution 

Mean 2002.13 

Standard Deviation 3.91 

Standard Error Mean 0.01 

Upper 95% Mean 2002.15 

Lower 95% Mean 2002.10 

Number of Samples 98,573 

 

 Figure 5-12 represent emission inspection failure rates based on the model year. As 

expected as vehicles getting older the emission inspection failure rates are increasing. Because of 

that fact model year of the vehicle may be a good predictor for the model. 

 

Figure 5-12 Emission test failure rate vs model year 
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5.1.6 VSP Distribution 

 VSP is also variable that is used in this research as a way to validate and compare 

vehicles sample in particular samples from remote sensing measurements. As described 

previously in this work only measurement with the certain VSP range are included in this 

analysis. The VSP range selected for the data used for modeling lies within 0 – 30 kW/Tonne. 

 

 

Figure 5-13 VSP distribution by model year 
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 The VSP distribution is shown in Figure 5-13 and it floats around 15 kW/Tonne. For 

newer vehicles it seems to be somewhat higher than for older vehicles, but still remains within 

the margin of error. Due to the smaller sample size, the standard error for older vehicles is much 

higher. Figure 5-13 demonstrates the VSP distribution for the selected sample.  

5.1.7 Accumulated VMT (Odometer) 

 The distribution of odometer readings was plotted (Figure 5-14). Both the Georgia 

Registration database and the Georgia Inspection and Maintenance database include odometer 

readings. The I/M database was chosen to supplement the Georgia Registration database because 

of missing records.  

 

Figure 5-14 Odometer distribution 

  

 The average car that is being considered in this model has been driven approximately 121 

thousand miles. Detailed statistical description of the odometer data is presented in Table 5-5.  



 

 126 

 

Table 5-5 Summary statistics for odometer distribution 

Mean 121,562 

Standard Deviation 63,367 

Standard Error Mean 202 

Upper 95% Mean 121,957 

Lower 95% Mean 121,166 

Number of Samples 98,573 

  

 

  The relationship between accumulated miles and failure rate is illustrated in Figure 5-15. 

It is not surprising that as vehicles used more and accumulate more miles the failure rate is going 

up. 

Figure 5-15 Emission test failure rate vs Accumulated Miles (Odometer readings) 
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5.1.8 Length of Ownership 

 Every owner may treat their vehicle differently. Some my pamper their cars and keep 

them in top mechanical condition;  others may not maintain their vehicles as well. In this chapter 

variable that may describe the differences between owners is investigated. Resulting difference if 

they exist will be derived.  If there is one the difference should be incorporated into 

considerations for frequency of emission tests. This section will examine one of the parameters 

that can shed some light on this question.  

 Length of ownership may be one of the parameters describing responsible ownership 

practices. Length of ownership is defined as the difference between the date of purchase and date 

of measurement in years. Length of vehicle ownership was examined using two techniques. One 

examined the full data sample including all vehicles used in the model. The second analyzed the 

length of ownership of two samples. Vehicles that passed the emission inspection test were 

separated from vehicles that failed the emission inspection test to examine if there any 

statistically significant differences between the two samples.  

 Figure 5-16 represent distribution of Length of Ownership variable. Vehicles had the 

range of ownership spanning from 0 to 25 year, with the majority of having the length of 

ownership between 1 and 6 years old. 
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Figure 5-16 Distribution of length of ownership 

 Figure 5-17 represents failure rates based on length of ownership. As evidenced by the 

plot, failure rates fall as length of ownership increases. This may suggest that owners that keep 

vehicles longer take care of those vehicles well enough to pass emission tests. Data for vehicles 

over 15 years old were excluded because the number of samples for those groups are too low. 
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Figure 5-17 Failure rates for length of ownership 

   

 Initial analysis of length of ownership revealed that the average vehicle is owned for a 

little more than 4 years and the majority of vehicles are owned between one and five years.  

 Summary statistics for the full sample can be viewed in Table 5-6. 

Table 5-6 Length of ownership summary statistics full sample 

Mean 4.26 

Standard Deviation 3.14 

Standard Error Mean 0.01 

Upper 95% Mean 4.28 

Lower 95% Mean 4.24 

Number of Samples 98,573 

  

0%

2%

4%

6%

8%

10%

12%

14%

16%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

F
a

il
u

re
 R

a
te

, 
p

er
c
en

t 

Length of Ownership, Years 



 

 130 

 Figure 5-18 represents the relationship between emission test failure rate, model year, and 

length of ownership. It is evident from the chart that as vehicles getting older they fail more 

often, however even when vehicles are getting older and length of ownership is increasing 

vehicle emission failure rate does not increase. For example comparing vehicles that have zero 

length of ownership to vehicles that have six years of ownership vehicles in the same model year 

have lower emission test failure rates for the vehicles with six years of ownership than vehicles 

with zero years of ownership.  

 

Figure 5-18 Emission inspection failure rate vs model year vs length of ownership  

 The next set of analysis was done separately for vehicles that passed the emission 

inspection test and vehicles that failed the emission inspection test. For the group of vehicles that 

passed the emission inspection test the average age was 4 years. Distribution for length of 

ownership for vehicles that passed and vehicles that failed the emission inspection is shown in 
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Figure 5-19.  Distribution of length of vehicle ownership for vehicles that passed emission 

inspection peaked at about 5 years of ownership whereas vehicles that failed emission inspection 

peaked at about 2 years of ownership. 

 

Figure 5-19 Distribution of length of ownership ‘pass’ and 'fail' groups 

 Table 5-7 shows summary statistics for length of ownership for ‘pass’ group. 

Table 5-7 Summary statistics for length of ownership ‘pass’ group 

Mean 4.29 

Standard Deviation 3.13 

Standard Error Mean 0.01 

Upper 95% Mean 4.31 

Lower 95% Mean 4.27 

Number of Samples 89,948 
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 Vehicles that failed emission inspection had a shorter length of ownership. The average 

time that the vehicle was held in this group was 3.97 years. 

 

Table 5-8 Summary statistics for length of ownership ‘fail’ group 

Mean 3.97 

Standard Deviation 3.29 

Standard Error Mean 0.04 

Upper 95% Mean 4.04 

Lower 95% Mean 3.90 

Number of Samples 8,625 

 

  

 To test two populations of vehicles: one that passed the emission inspection test and one 

that failed emission inspection test Kolmogorov-Smirnov non-parametric test is utilized. The null 

hypothesis in this case it that two populations have the same distribution. The alternative 

hypothesis is that the distributions of two populations are different. The test reveals that two 

underlying distributions are different. The null hypothesis have been rejected since D-value is 

smaller than α=0.05. 

 

Table 5-9 Kolmogorov-Smirnov test for the length of ownership distribution of passed and failed 

vehicles 

KS KSa D=max|F1-F2| D-value 

0.0245728 7.7149621 0.0869636 <.0001* 

  

 CDF for length of ownership distributions for vehicles that passed and failed emission 

inspection is presented in Figure 5-20.   
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Figure 5-20 CDF of length of ownership for passed and failed vehicles. 

 

 

5.1.9 Original Owner 

 The other parameter that can help to differentiate between responsible and less so owners 

can be an original owner flag. Differences for two conditions were examined: 1) if the car is 

owned by the original owner or 2) it was bought and sold shortly thereafter. Original owner is a 

categorical variable that was derived from two variables: purchase date extracted from Georgia 

Registration data and the vehicle’s model year. If the vehicle model year and purchase date year 

are the same, then the original owner variable takes the value of ‘1’, representing the original 

owner. If the purchase date and the model year are different then this variable was given a value 

of ‘0’, representing a non-original owner.  
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Figure 5-21 Failure rates for ‘original’ vs. ‘non-original’ owner 

 

 Figure 5-21 shows clear differences between original owner vehicles and non-original 

owner vehicles. However, non-original owner vehicles are older than the original owner 

vehicles; therefore, to truly estimate if there is a difference between the two populations, vehicles 

from each group were analyzed.  

Table 5-10 t-test results for Pass/Fail Original Owner Populations 

Difference 2.78 

Std Err Dif 0.02 

Upper CL Dif 2.82 

Lower CL Dif 2.74 

Confidence 0.95 

t Ratio 135.23 

Degrees of Freedom 102886.3 

Prob > |t| <.0001* 

Prob > t <.0001* 

Prob < t 1.0000 
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Figure 5-22 Failure rates of ‘original’ vs.‘non-original’ owner by model year 

 

 Comparing two populations of vehicles by model year showed that for nearly all model 

years, except for a couple of newer model years, failure rates of non-original owner vehicles 

were higher. Data was plotted starting from 1991, since for the model years 1986 to 1991 had a 

small sample size. The conclusion suggests that the original owner variable can be predictive of 

vehicle failure. 
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 Table 5-11 presents a summary of the data for the original owner and non-original 

variable analysis. 

 

5.1.10 Engine Displacement Category 

 Displacement recoded is a variable derived from vehicles displacement values obtained 

from the VIN decoder. Although displacement values are present in Georgia registration and 

Georgia inspection and maintenance databases, the VIN decoder provides more accurate results 

since it is decoding each vehicle’s VIN identification number individually.  

 The displacement variable has a multitude of values. To make it more manageable, raw 

displacement figures were recoded into eight categories. Vehicles with displacement of one liter 

or less were placed into category “1.” Vehicles with displacement between one and two liters 

were placed into category “2” and so on through category “8.” The distribution of the 

displacement-recoded variable is shown in Figure 5-23.  
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Figure 5-23 Distribution of displacement recoded categories 

  

 Table 5-12 represents summary statistics for the displacement-recoded category. The 

average vehicle has a three liter engine with a standard deviation of 1.1 liters. 

Table 5-12 Displacement recoded categories summary statistics 

Mean 3.00 

Standard Deviation 1.11 

Standard Error Mean 0.00 

Upper 95% Mean 3.01 

Lower 95% Mean 2.99 

Number of Samples 99,998 

  

 The vehicle’s engine displacement appears to have inverse relations to vehicle emission 

test failure rates. As vehicle’s engine displacement increases emission testing failure rates seem 

to slightly decrease (Figure 5-24). This can happen for several different reason such as vehicles 

with larger engine, especially passenger cars, are more expensive with more sophisticated engine 
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controls. Since they are more expensive they are most likely better maintained and therefore 

have lower emission failure rates. At the same time the failure rates are only significantly lower 

for only one vehicle displacement category (vehicles with engine displacement between 5 and 6 

liters) for the rest of the vehicles failure rate is holding steady (Table 5-13).   

Table 5-13 Number of vehicles and failure rates for displacement category  

Displacement Pass Fail Total 

Percent 

Failed 

1 650 5937 6587 10% 

2 2247 19686 21933 10% 

3 2683 26961 29644 9% 

4 1743 15120 16863 10% 

5 739 7930 8669 9% 

6 25 364 389 6% 

 

 

Figure 5-24 Emission test failure rate for displacement categories  
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5.1.11 Emission Test Results 2010 

 Emission test results 2010 is a result of 2010 emission tests. Those results were obtained 

from the 2010 Georgia Inspection and Maintenance database. Only pass or fail results are 

included in this analysis; all abort (in the I/M 2010 data set marked as ‘A’) and error readings 

were removed. From 117,294 total records 10,345 had failed results, which represents 

approximately 8.82% of the fleet and 106,949 vehicles had a passing reading, which represents 

approximately 91.18% of the fleet. It has to be pointed out that, analyzing all records from the 

Georgia Inspection and Maintenance database of 2010, 9.77% of vehicles failed the emission 

test. The sample used for these analyses includes only I/M 2010 records that merged with CAFÉ 

project emission records and it slightly under-represents failed vehicles. A sample collected for 

the CAFÉ project is slightly skewed toward cleaner vehicles.   

5.1.12  Emission Test Results 2009 

 Emission test result from the previous year is considered to be a variable that is used in 

the model since previous emission test results are usually strong predictors for future vehicle 

emission testing. Emission test results 2009 is a result of the test for calendar year 2009. Vehicles 

with VIN matching 2010 emission inspection data were selected for this analysis. Just like test 

results for 2010, 2009 data was cleaned of abort or error readings. 93,602 vehicle VINs from 

2010 were matched to 2009 emission inspection results. 7,736 vehicles had failed emission 

inspection, which represents 8.26%, and 85,866 vehicles had passed the emission inspection in 

2009, which represents 91.73% of the sample. Only 79.80% of vehicles with emission inspection 

test results for 2010 matched to 2009 emission inspection results. This is due to new vehicles 

entering the emission testing vehicle pool, i.e., vehicles that became four years old and were 

required to have an emission test in 2010 that did not have to be tested in 2009. Another factor is 

the attrition of vehicles to neighboring counties or other geographical locations. 
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5.1.13 Miles Per Year 

 Miles per year, more precisely, miles per year from 2009 to 2010, were calculated by 

subtracting odometer readings for 2009 from odometer readings of 2010. Missing values from 

Inspection and Maintenance database were supplemented by the records from the Georgia 

Registration database. Missing values were calculated by dividing odometer readings obtained 

from the 2010 emission inspection database by the vehicle age.  Figure 5-25 represents the 

distribution of miles per year. Vehicles are traveling, on average, 16,645 miles per year with a 

standard deviation of 7,649. Detailed results can be seen in summary statistics for distribution of 

miles per year Table 5-14. 

 

 

Figure 5-25 Distribution of miles per year 
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Table 5-14 Summary statistics for miles per year 

Mean 16,650 

Standard Deviation 7612 

Standard Error 

Mean 
24 

Upper 95% Mean 16,697 

Lower 95% Mean 16,603 

Number of 

Samples 
98,572 

  

 Figure 5-26 represents relationship between vehicle’s emission test failure rate and 

annual vehicle miles traveled. As annual vehicle miles traveled increased vehicle’s emission test 

failure rate increase as well until it levels off at the higher end of annual miles traveled.   

 

Figure 5-26 Failure rate vs annual miles traveled 
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5.2 Estimating Probability of Failure Model 

5.2.1 Correlation between variables 

 Correlation matrix shown in Table 5-15 describes correlation between all pairs of data 

sets. There are some pairs that have somewhat strong correlation and since variable 

independence is one of the assumptions of linear regression they must be excluded from analysis. 

For example, carbon monoxide and hydrocarbon remote sensing measurements have a 

correlation coefficient of  0.27. Therefore, only one variable, which is the strongest predictor of 

probability of failure between carbon monoxide and hydrocarbons is going to be used in the 

model. There are other variable pair that shows significant correlation such as length of 

ownership and model year. Both of those variable are going to stay in the model because they 

have an impact on policy component of the proposed program. The other variable pair that has 

strong correlation is miles per year and model year. Both of the variables are also part of the 

policy impact on vehicle use and therefore will be kept in the model. Other variable pairs do not 

show strong correlation and therefore are statistically independent.     
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Table 5-15 Correlation Matrix 

 COperc HCppm NOxpp

m 

Model 

Year 

Odometer_

RDB 

Length of 

Ownership 

Miles per 

year 

COperc  0.2705 0.1129 0.0658 0.0684 -0.0238 0.0663 

HCppm 0.2705  0.1314 -0.0424 0.0540 -0.0009 -0.0207 

NOxppm 0.1129 0.1314  -0.0654 0.1621 -0.0222 -0.0149 

Model Year 0.0658 -0.0424 -0.0654  -0.0516 -0.2842 0.3208 

Odometer 0.0684 0.0540 0.1621 -0.0516  -0.0790 0.0061 

Length of 

Ownership 

-0.0238 -0.0009 -0.0222 -0.2842 -0.0790  -0.0330 

Miles per year 0.0663 -0.0207 -0.0149 0.3208 0.0061 -0.0330  

  

 Several variables such as model year, odometer readings, length of ownership, miles per 

year are explanatory variables and observed without error. Other variables such as carbon 

monoxide and nitrogen oxides are normally distributed with larger sample size. 

 Relationship between failure rates and variables that are used in the model were 

demonstrated in previous sections and are linear. Therefore the use of linear regression model is 

justified in the use of the probability of failure prediction.  

5.2.2 Stepwise methods 

 To model the probability of failure of the emission test, ten variables describing vehicle 

emission readings, vehicle characteristics, vehicle ownership history, and past emission test 

results were entered into  the model. They are: carbon monoxide, hydrocarbons, and nitrogen 

oxides, measurements from remote emission sensing; Model year, Length of ownership, Original 

owner indicator, Odometer, Previous test result, Miles per year, and engine displacement 

variable. Units for model variables are shown in Table 5-16. 
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Table 5-16 Model Variables and units 

Variable Units 

Carbon Monoxide Percent 

Hydrocarbons Parts per million 

Nitrogen Oxides Parts per million 

Model Year Year 

Length of ownership Years 

Original owner indicator 0 – original, 1 – non-original 

Odometer Miles 

Previous test results P- pass, F- Fail 

Miles per year Miles 

Displacement  Liters 

 

 First, a stepwise method was used to determine if any of the aforementioned variables are 

significant in explaining the probability of future test results. Stepwise regression is an approach 

to selecting a subset of effects in a regression model. It is often used when there are numerous 

terms and there is a desire to reduce the number of variables and provide a good fit. In practice it 

is a simpler procedure to include variables that are significant for the model in one step instead 

of testing each variable separately. Resulting model results are presented in Table 5-17. 

Table 5-17 Stepwise regression 

-LogLikelihood p R-Square AICc BIC 

23186.478 9 0.0655 46391 46474.7 
 

 Table 5-18 represents parameter estimates for variables that were inserted  in the model 

and considered significant. Those variables are marked with ‘X’ in the Entered column. 

Variables that were not entered in the model were deemed to be not significant and are not 

marked in Table 5-18 with an ‘X’ in Entered column. Out of ten variables investigated, only two 

were not significant. Those are ‘HC ppm’ – hydrocarbon readings, and displacement, which is a 
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recoded variable deriving from vehicle displacement. Hydrocarbons are closely correlated with 

carbon monoxide readings which may be the reason why it is as insignificant in the model.   

 

Table 5-18 Stepwise regression parameter estimate 

Lock Entered Parameter Estimate nDF Wald/Score 

ChiSq 

"Sig Prob" 

X X Intercept 108.907131 1 0 1 

  X CO percent 0.19262956 1 81.47153 <.0001 

    HC ppm 0 1 3.197673 0.07374 

  X NOx ppm 0.00026 1 164.2869 <0.0001 

  X Model year  -0.0556844 1 57.43359 3.5e-14 

  X Length of ownership  -0.0541014 1 123.496 <.0001 

  X Original owner{0-1} 0.08662685 1 19.66397 0.00001 

    Displacement 0 1 3.525162 0.06044 

  X Odometer 2.88084e-6 1 38.88251 <.0001 

  X 2009 Emission test result {F-P} 0.49498031 1 888.7988 <.0001 

  X Miles per year 1.53452e-5 1 15.78931 0.00007 

 

 Table 5-19 shows the variables that were entered into a model in order of significance. 

According to Table 5-19 the most significant variable in predicting results of next year’s test is 

the previous test result (2009 Emission Test Result). It is followed by Odometer readings, NOx 

ppm, Length of ownership, CO percent, Model year, Original owner indicator, and Miles per 

year. As mentioned previously, HC ppm and displacement recoded were deemed not significant. 
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Table 5-19 Stepwise regression step history 

Step Parameter Action L-R 

ChiSquar

e 

"Sig 

Prob" 

R-

Square 

p AICc BIC 

1 2009 Emission test result{F-P} Entered 1347.417 0.0000 0.0272 2 48281.6 48300.3 

2 Odometer Entered 1085.319 0.0000 0.0490 3 47198.3 47226.2 

3 NOx ppm Entered 299.073 0.0000 0.0550 4 46901.2 46938.5 

4 Length of ownership Entered 278.6234 0.0000 0.0607 5 46624.6 46671.2 

5 CO percent Entered 122.3755 0.0000 0.0631 6 46504.2 46560.1 

6 Model year Entered 89.00627 0.0000 0.0649 7 46417.2 46482.4 

7 Original owner{0-1} Entered 14.64965 0.0001 0.0652 8 46404.6 46479 

8 Miles per year Entered 15.63209 0.0001 0.0655 9 46391 46474.7 

9 HC ppm Entered 3.456312 0.0630 0.0656 10 46389.5 46482.6 

10 Displacement Entered 3.530003 0.0603 0.0657 11 46388 46490.4 

11 Best Specific   0.0655 9 46391 46474.7 

 

 After eliminating non-significant variables, a nominal logistic fit model with logit 

treatment was used to calculate the probability of a vehicle’s emission test failure. The whole 

model test shown in Table 5-20 indicates that the model is statistically significant.  

Table 5-20 Model Test 

Entropy R-Square 0.0665 

Generalized R-Square 0.0867 

Mean -Log p 0.2798 

RMSE 0.2775 

Mean Abs Dev 0.1536 

Misclassification Rate 0.0891 

Number of Samples 72,279 
 

 Table 5-21 shows parameter estimates and test of variable significance. All variables 

entered in the model are deemed to be significant. The model in formula form is represented 

below. 
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Table 5-21 Model parameter estimate 

Term Estimate Std Error ChiSquare Prob>ChiSq 

Intercept 109.243096 15.198105 51.67 <.0001* 

COperc 0.20474529 0.0219972 86.63 <.0001* 

NOxppm 0.00025287 2.1434e-5 139.19 <.0001* 

Year_RDB  -0.0558151 0.0075946 54.01 <.0001* 

Length of ownership  -0.051641 0.0051802 99.38 <.0001* 

Original owner  -0.2077606 0.0420499 24.41 <.0001* 

2010_ODOMETER 2.91277e-6 4.8159e-7 36.58 <.0001* 

2009_OVERALL_TEST_RES[F] 0.49696457 0.0178174 777.97 <.0001* 

Miles per year 1.51222e-5 4.0414e-6 14.00 0.0002* 
 

 
 
 
 
 
 

                                                                

                                          {       |        }

                                        {          |          }

                           

 

where Lin [F] is a linear combination of the regressors. 

Probability of failure can be found by using the following formula: 

                 
 

     (       )
 

 

 Vehicles with a probability of failure higher than 50% are considered to be failing 

vehicles in this model. Vehicles that have a probability of failure less than 50% are considered to 

be passing vehicles. However, this research will look at vehicles not from the standpoint of 

‘pass’ or ‘fail’ but from the standpoint of the actual probability of failure. Even with a 

probability of failure below 50% some vehicles are more likely to fail than others. Figure 5-27 
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shows the model outcome; more precisely, it shows the probability of failure distribution. 

Summary statistics for the distribution are shown in Table 5-22.  

5.3 Model Diagnostics 

 To check that the resulting model adequately describes the underlying system, model 

diagnostics are performed. Diagnostics involve plotting model variables against the probability 

of failure that was calculated by the model and analyzing relationships between variables and the 

failure rate. If the model is working properly then those relationships should closely follow 

relationships that were assumed.   

 Figure 5-27 demonstrates the probability of failure distribution. The majority of vehicles 

have extremely low probabilities of failure. Judging by  

Table 5-23, the 90
th

 percentile of that distribution has a failing rate of 0.16 while the 10
th

 

percentile has a failing rate of 0.04 even though the 90th percentile failing rate seems to be low, 

it is four times larger than that of the 10
th

 percentile.   
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Figure 5-27 Distribution of probability of failure 

Table 5-22 Probability of failure summary statistics 

Mean 0.0887948 

Standard Deviation 0.0659795 

Standard Error Mean 0.0002454 

Upper 95% Mean 0.0892758 

Lower 95% Mean 0.0883138 

Number of Samples 72,279 
  

Table 5-23 Probability of failure quantiles  

100.0% maximum 0.97559 

99.5%  0.43816 

97.5%  0.2767 

90.0%  0.15864 

75.0% quartile 0.0993 

50.0% median 0.06823 

25.0% quartile 0.05151 

10.0%  0.04117 

2.5%  0.03465 

0.5%  0.03062 

0.0% minimum 0.02471 
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Figure 5-28 demonstrates cumulative distribution function for probability of failure 

predicted by the model. 

 
Figure 5-28 Cumulative distribution function for probability of failure identified by the model   

 

5.3.1 Probability of Failure versus Carbon Monoxide 

 The plot for carbon monoxide readings versus the probability of failure is shown in 

Figure 5-29. This plot shows the relationship between carbon monoxide readings and the 

probability of failure calculated by the model. The original assumption for carbon monoxide 

measurements is that, as carbon monoxide emissions increase, so does the probability of failure. 

For extremely high carbon monoxide readings, the probability of failure should produce failing 

results, e.g., the probability of failure should be higher than 0.5. Figure 5-29 displays the 

relationship between carbon monoxide readings and the probability of failure calculated by the 

model.   
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Figure 5-29 Probability of failure vs. carbon monoxide 

 

 The equation for the dependence of the probability of failure on carbon monoxide is 

shown below. This formula is based on parameter estimates provided in Table 5-25. 

Probability of Failure = 0.082 + 0.515 * CO Percent 

 Table 5-24 provides summary statistics for the relationship between probability of failure 

predicted by the model and carbon monoxide readings.  

 

 

Table 5-24 Summary Statistics for Probability of Failure vs. Carbon Monoxide 

R-Square 0.112754 

R-Square Adj 0.112742 

Root Mean Square Error 0.062149 

Mean of Response 0.088795 

Observations (or Sum Wgts) 72,279 



 

 152 

 
 

 

Table 5-25 Parameter estimates for the probability of failure vs. carbon monoxide 

Term Estimate Standard Error t Ratio Prob>|t| 

Intercept 0.0823513 0.000241 342.07 <.0001* 

COperc 0.0514806 0.000537 95.84 <.0001* 

 

5.3.2 Probability of Failure versus Model Year 

 For vehicle model year, a reasonable assumption would be that as vehicles get older their 

emissions should deteriorate, and therefore older vehicles more likely would be high emitting 

vehicles and fail more often.  Figure 5-30 shows the plot that describes the relationship between 

the probability of failure and a vehicle’s model year. The original assumption is confirmed; as 

vehicles get older their probability of failure increases.  
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Figure 5-30 Probability of failure vs. model year 

 
 

 The equation for the probability of failure versus model year is based on parameter 

estimates provided in Table 5-27 and shown below. 

 

Probability of Failure = 19.721 - 0.0098*Model Year 

 

 Summary statistics of this model are presented in Table 5-26. 
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Table 5-26 Summary statistics for probability of failure vs. model year 

R-Square 0.289457 

R-Square Adj 0.289447 

Root Mean Square Error 0.055617 

Mean of Response 0.088795 

Observations 72,279 
 
 
 

Table 5-27 Parameter estimates for the probability of failure vs. model year 

Term Estimate Standard Error t Ratio Prob>|t| 

Intercept 19.720506 0.114409 172.37 <.0001* 

Model Year  -0.009808 5.716e-5  -171.6 <.0001* 

 

5.3.3 Probability of Failure versus Odometer Readings 

 The assumption for vehicle miles traveled is that as the vehicles are driven more they will 

deteriorate at a faster pace than vehicles that are driven less. So the probability of failure for 

those vehicles will increase. Looking at Figure 5-31 the results from the model produce the type 

of relationship that was originally assumed. As the vehicle odometer reading increases so does 

the probability of failure calculated by the model. 
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Figure 5-31 Probability of failure vs. odometer readings 

 The parameter estimates for the model of the probability of failure versus odometer 

readings is given in Table 5-29. Based on the values from the table, the equation representing the 

probability of failure versus odometer readings is presented below: 

 

Probability of Failure = 0.0036747 + 6.5725e-7*Odometer Readings 

  

 Table 5-28 provides summary statistics for this model. 
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Table 5-28 Summary statistics for probability of failure vs. odometer readings 

R-Square 0.383283 

R-Square Adj 0.383275 

Root Mean Square Error 0.051815 

Mean of Response 0.088795 

Observations  72,279 
 
 

 

Table 5-29 Parameter estimates for the probability of failure vs. odometer readings 

Term Estimate Standard Error t Ratio Prob>|t| 

Intercept 0.0036747 0.000445 8.25 <.0001* 

Odometer 6.5725e-7 3.101e-9 211.94 <.0001* 

 

5.3.4 Probability of Failure versus Nitrogen Oxides 

 It would be fair to assume that as the probability of failure increases so do nitrogen oxide 

emissions. The chart in Figure 5-32 shows the accuracy of this assumption.  
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Figure 5-32 Probability of failure vs. nitrogen oxides 

 The equation describing the relationship between nitrogen oxides and probability of 

failure is shown below.  

 

Probability of Failure = 0.077898 + 0.0000381*NOxppm 
 

  

 Summary statistic indicating that nitrogen oxides are a significant variable in predicting 

the probability of failure.  

Table 5-30 Summary statistics for probability of failure vs. nitrogen oxides 

R-Square 0.105205 

R-Square Adj 0.105192 

Root Mean Square Error 0.055692 

Mean of Response 0.086138 

Observations 70,972 
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Table 5-31 Parameter estimates for the probability of failure vs. nitrogen oxides 

Term Estimate Standard Error t Ratio Prob>|t| 

Intercept 0.077898 0.000228 342.14 <.0001* 

NOxppm 0.0000381 4.17e-7 91.35 <.0001* 

 

5.3.5 Probability of Failure versus Length of Ownership 

 Length of ownership is the variable that describes the number of years that the vehicle 

has been owned by a particular owner. Hypothesis for this variable is that the longer the length of 

ownership, the better owners care for their vehicles; therefore, length of ownership should have 

an inverse relationship to the probability of failure. As shown previously, as length of ownership 

increases probability of failure decreases.  

 
Figure 5-33 Probability of failure vs. length of ownership 

 Based on Figure 5-33 and the following equation, that is the relationship that is observed.  

 

Probability of Failure = 0.1029457 - 0.0035454*Length of Ownership 
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 Table 5-32 and Table 5-33 provide evidence that length of ownership is a statistically 

significant variable. 

Table 5-32 Summary statistics for probability of failure vs. length of ownership 

R-Square 0.036274 

R-Square Adj 0.03626 

Root Mean Square Error 0.057797 

Mean of Response 0.086138 

Observations 70,972 
 

 

Table 5-33 Parameter estimates for the probability of failure vs. length of ownership 

Term Estimate Standard Error t Ratio Prob>|t| 

Intercept 0.1029457 0.000391 263.34 <.0001* 

Length of Ownership  -0.003545 6.86e-5  -51.68 <.0001* 

 

5.3.6 Probability of Failure versus Miles Per Year 

 Emission control equipment failure is a direct result of vehicle age and usage. Vehicles 

that are driven more should experience deterioration of the vehicle’s components sooner than 

vehicles that are driven less. Therefore with an increase in annual vehicle travel, the probability 

of failure should increase as well. 
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Figure 5-34 Probability of failure vs. miles per year 

 Figure 5-34 and the following equation demonstrate this fact. Table 5-34 and Table 5-35 

show that annual miles traveled is a statistically significant variable in predicting the probability 

of failure. 

 

Probability of Failure = 0.0541452 + 1.9556e-6*Miles per year 

 

Table 5-34 Summary statistics for probability of failure vs. miles per year 

R-Square 0.055638 

R-Square Adj 0.055625 

Root Mean Square Error 0.057213 

Mean of Response 0.086138 

Observations 70,972 
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Table 5-35 Parameter estimates for the probability of failure vs. miles per year 

Term Estimate Standard Error t Ratio Prob>|t| 

Intercept 0.0541452 0.000539 100.39 <.0001* 

Miles per year 1.9556e-6 3.024e-8 64.66 <.0001* 

 

5.3.7 Bayesian Analysis 

 Bayesian analysis is concerned with generating a posterior distribution of the unknown 

parameters given both the data and some prior density. This will allow us to estimate uncertainty 

in estimating vehicle failure.  Following is the formula that is used in this analysis.  

    (     |          )   
    (          |         (    )

 (          )
 

 It is calculated that the probability that a vehicle was flagged by the model as being 

failing is 0.003 (out of 84,910 records 233 had fail flags). The probability that a flagged vehicle 

failed the emission test is 0.0131. As discussed in previous sections, the probability of failure for 

the 2010 emission test is 0.08938;  hence the probability of vehicle failure identified by the 

model as a failing vehicle is 0.3903 or 39%. 

5.4 Model for Vehicles with Multiple Remote Sensing Measurements of High CO 

(more than 1.2%) 

 Remote emission sensing is notorious for large uncertainty in individual measurements. 

To increase reliability of remote sensing measurement multiple observations of the same vehicle 

might be helpful. This section examines a scenario where the vehicle was measured multiple 

time by the remote emission sensor. The variability of remote sensing measurement can be 

attributed to several factors such as: driving conditions or external factors such as strong wind. 

Because of so much variability in driving conditions, a clean vehicle may be identified as a high 

emitting vehicle if, for instance, the vehicle was under extreme acceleration. The opposite case 

applies as well. It is possible that vehicles that fail an emission inspection can demonstrate clean 
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emissions when they pass the remote emission sensor. This result may be achieved by coasting 

(passing without any acceleration) a vehicle through measurement zones. That uncertainty can be 

overcome either by collecting large samples of data and analyzing groups of vehicles rather than 

individual vehicles, or by collecting multiple measurements of the same vehicle. Multiple 

measurements of the same vehicle reduce the uncertainty of the measurements and allow 

individual vehicle analysis. This section will discuss a case where multiple vehicles with at least 

two high CO measurements were analyzed and modeled similarly to previous sections. 

Table 5-36 Model test high CO multiple vehicles 

Model  Log Likelihood DF ChiSquare Prob>ChiSq 

Difference 7.581781 3 15.16356 0.0017* 

Full 6.195218    

Reduced 13.776998    
 
  

 Table 5-36 and Table 5-37 demonstrate a result from such a model. There were twenty-

five measurements that had multiple observations of CO more than 1.2%.  

Table 5-37 Model test high CO multiple vehicles 2 

R-Square (U) 0.5503 

AICc 22.3904 

BIC 25.2659 

Observations  25 

  

 As a result of R-Square, the model improved significantly, from 0.06 for a model that 

included all vehicles to 0.55 (Table 5-38) for a model with multiple observations of CO 

measurements greater than 1.2%.  

 

Table 5-38 High CO multiple observation model R-Square 

Measure Training 

Entropy R-Square 0.5503 

Generalized R-Square 0.6809 

Mean -Log p 0.2478 

RMSE 0.2696 

Mean Abs Dev 0.1503 



 

 163 

Measure Training 

Misclassification Rate 0.0800 

Number of Samples 25 
 

 In addition to setting carbon monoxide measurements to be more than 1.2%, three other 

parameters were deemed statistically significant. They include Model year, 2010 Odometer 

reading and the test result from the previous year.   

Table 5-39 Parameter estimates multiple observations CO > 1.2% model 

Term Estimate Standard 

Error 

ChiSquare Prob>ChiSq 

Intercept 1052.5515 530.6806 3.93 0.0473* 

Model Year  -0.5304155 0.2669087 3.95 0.0469* 

Odometer 2.54162e-5 1.4274e-5 3.17 0.0750 

2009 Emission Test Result[F] 2.2008076 1.2198278 3.26 0.0712 
 
 
 

Table 5-40 Effect likelihood ratio test 

Source Nparm DF L-R ChiSquare Prob>ChiSq 

Model Year 1 1 7.2520442 0.0071* 

Odometer 1 1 4.70928598 0.0300* 

2009 Emission Test Result[F] 1 1 6.11606353 0.0134* 
 

 A model that includes multiple observations of vehicles illustrates the potential that can 

be achieved if multiple observations of the same vehicle can be obtained. The model with 

multiple observations was able to predict 83% of failing vehicles correctly (Table 5-41). There 

were very few measurements in the model: 25 to be exact, however it is expected the predictions 

will not change by a great margin if the number of vehicles in the model is increased.   

Table 5-41 Predicted by model failures 

 2010 I/M Test Result 

Model Probability of Failure  F P 

F 5 1 

P 1 18 
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5.4.1 Bayesian Analysis High CO Multiple Observations Model 

 Similar to the full model, estimation of uncertainty using Bayesian analysis was 

performed in the model which includes multiple observations of high carbon monoxide readings. 

The following formula provides the basis for this analysis.  

 

    (     |          )   
    (          |         (    )

 (          )
 

 

 It is calculated that the probability that a vehicle was flagged by the model as being 

failing is 0.0.24 (6 out of 25 vehicles had fail flag). The probability of the flagged vehicle failing 

the emission test is 0.83 (5 out of 6 vehicles). In this data set 6 out of 25 vehicles failed the actual 

emission inspection test.  Therefore the probability of vehicle failure as identified by the model is 

0.83 or 83%. 

 This is a significant improvement over a model that has single observations of the 

vehicles. It also suggests that increased use of remote sensing equipment to the point of 

collecting multiple observations of the same vehicle can significantly improve the predicting 

power of the model. 

5.5 Conclusion 

 After careful investigation variables that have a correlation with the probability of failure 

of the emission test were selected to be checked for their predictive powers. Those variables are: 

carbon monoxide, hydrocarbons, nitrogen oxides, model year, length of ownership, 

displacement, odometer readings, previous emission test, and annual vehicle miles traveled.  

Not all of those variables were selected and formed final model. Hydrocarbon readings were 

excluded from the final model because of the strong correlation with carbon monoxide readings. 
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Engine displacement variable did not demonstrate predictive powers for probability of vehicle 

failure therefore it was not included in the final model. Other variables were entered into the 

linear regression model, which proved to be statistically significant.  

 In addition modeling scenario that included only vehicles with multiple remote sensing 

observation was investigated as well. That model with similar variable produced a much stronger 

correlation and produced more accurate predictions, therefore demonstrating the improvement in 

a model correlation coefficient when using multiple observations the remote sensing data.   
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6 APPLYING EMISSION SAVINGS 

 The case study devised in this research was designed to present emission savings possible 

to achieve if the vehicle emission inspection policy would become stringent. However, some of 

the aspects, such as extreme frequency of testing, which is every three months, described in the 

case study may not be politically feasible. Nevertheless estimations of emission savings are 

given with the variable time frequencies that include more frequent testing.    

6.1 CO Savings 

Based on discussions in previous sections, approximately ten percent of vehicles fail 

emission inspection. It is assumed that for this new proposed program the same amount of 

vehicles will be considered to be high emitting vehicles. Top ten percent of vehicle probability of 

failure will have accelerated timeframe for testing. To compensate for the extra number of tests 

ten percent of the cleanest vehicles will be exempt from taking the emission test every twelve 

months. Vehicles in the 90th percentile (ten percent of vehicles that are most likely to fail) have a 

probability of failure that is at least four times greater than vehicles in the 10th percentile (ten 

percent of the clean vehicles)  

Table 5-23.  

 Vehicles in the 90th percentile for the probability of failure were split roughly into three 

groups with the intent to assign different times between emission tests. The group with the 

highest probability of failure, Group 1 (Table 6-1), will be required to take an emission test every 

three months. Group 2, the middle group of vehicles with the highest probability of failure, will 

have their test done every six months. Finally, group three will be tested every nine months. 

Table 6-1 Testing groups 

Test Frequency Group Probability of 

Failure Maximum 

Probability of Failure 

Minimum 

Test Frequency 

1 – Extreme Probability of Failure 0.97596  0.251693 Every 3 months 

2 – High Probability of Failure 0.251662 0.191671 Every 6 months 

3 – Medium Probability of Failure 0.191654 0.159638 Every 9 months 
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 Group 1 that represents vehicles with higher probability of failure are generally older. 

The average vehicle in this group has a model year of 1996. Model year distribution of this group 

can be found in Figure 6-1. 

 

Figure 6-1 Group 1 model year distribution 

 In addition to being older the vehicles from group 1 have higher odometer readings. The 

average vehicle from group 1 had an odometer reading of 240,000 miles. Distribution of 

odometer readings for group 1 is shown in Figure 6-2. 
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Figure 6-2 Group 1 odometer readings distribution 

  Group 2 that represents vehicles with high probability of failure has slightly different 

vehicle distributions. The vehicles in this group are slightly younger than in group 1 and have an 

average of 1999 model year. A model year distribution from group 2 is shown in Figure 6-3. 
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Figure 6-3 Group 2 model year distribution 

  Vehicles from group 2 also had less accumulated miles. The average vehicle from that 

group had 188,000 miles. Distribution of odometer readings for vehicles in the group 2 is shown 

in Figure 6-4. 
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Figure 6-4 Group 2 odometer readings distribution 

  Group 3 that includes vehicles with a medium probability of failure is similar in 

composition to group 2. Average vehicle in group 3 has 1999 model year. A model year 

distribution from group 3 is shown in Figure 6-5. 
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Figure 6-5 Group 3 model year distribution 

 However, group 3 vehicles also have slightly different distribution of odometer readings. 

Odometer readings distribution for group 3 is shown in  
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Figure 6-6 Group 3 odometer readings distribution  

 

 When comparing Figure 4-15, which describes passing vehicle behaviors for CO 

emissions, with Figure 4-35, which illustrates failing vehicle behavior for CO emissions, 

differences can be observed. Passing vehicles do not indicate any difference before or after the 

test. Furthermore, the growth of their CO emissions is essentially flat. Failing vehicles, after 

repairs, have raised CO emissions, albeit at a slightly lower rate.  These two scenarios are 

investigated to calculate potential emissions savings. First, vehicles that were supposed to be 

repaired had the repair done sooner than annual testing (e.g. 3, 6, or 9 months) and exhibited the 

behavior of a clean vehicle afterward. After repair, the growth of CO emissions was flat, and the 

vehicles did not fail again, and those vehicles were not flagged by the model and do not have to 

come early for testing. The second scenario considered a different condition. Vehicles that were 

repaired exhibited the behavior of failing vehicles and their CO emissions continued to rise at the 

rate shown in Figure 4-35 and they were flagged by the model as vehicles likely to fail. Every 
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time they came for a test, they failed.  Clean vehicle behavior is different from failing vehicles. 

The first and second scenarios represent the largest and smallest benefit from testing vehicles 

early.    

 As mentioned previously, vehicles were split into three groups. Group one includes 

vehicles with the highest probability of failure. Group two is a middle group and group three 

includes vehicles with a lower probability of failure in the 90
th

 percentile. 

 

Figure 6-7 Carbon monoxide emissions Group 1 scenarios 

  

 Figure 6-7 represents possible emission inspection patterns for Group 1, vehicles with the 

highest probability of failure. Scenario 1 represents a vehicle that was flagged by the model as 

likely to fail and had to be repaired. After the repair the vehicle exhibited the behavior of a clean 

vehicle and subsequently, did not have to take a test for the rest of the year. Repair for those 

vehicles occurred at day (-270) symbolized by a reduction of CO emissions, based on Figure 

4-35, and afterwards the vehicles remained clean, therefore, they had flat CO emission growth. 
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This scenario represents a 36.4% reduction of CO emissions for vehicles that are included in 

Group 1.  

    The second scenario for Group 1 represents vehicles that were repaired at day (-270).  

After the repair they were flagged as likely to fail again. Then they were tested again at day (-

180), failed the test, were repaired, and then were flagged again by the model as vehicles likely 

to fail, were tested at day (-90), failed that inspection and were repaired. This scenario will 

produce a 38.93% reduction in CO emissions. 

 Figure 6-8 represents similar scenarios as described above for vehicles in Group 2. Those 

are the vehicles in the middle failing group with a probability of failure between 0.191671 and 

0.251662. Vehicles in this group will be tested six months sooner than their scheduled annual 

test. The green line on the chart represents what would happen to CO emissions if no action is 

taken. The blue line represents Scenario 1, which says that vehicles were flagged by a model as 

failing vehicles and consequently were repaired, thus producing a reduction of CO emissions at 

day (-180). After the repair vehicles remained clean and were not flagged by the model as 

potentially failing vehicles. Therefore, the CO emissions growth rate was essentially flat. That 

scenario can produce 26.42% of CO emission savings.  
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Figure 6-8 Carbon monoxide emissions Group 2 scenarios 

  

 The red line in Figure 6-8 represents a scenario in which vehicles in group 2 were 

repaired and continue to exhibit the behavior of high polluting vehicles, therefore the growth of 

CO emission was not flat, like for scenario 1, but was growing at a rate that is consistent with a 

failing vehicle. This scenario can produce 17.10% of CO emission savings. 

 Figure 6-9 shows what will happen to the third and final group of potentially failing 

vehicles. This group includes group 3 vehicles with a probability of failure between 0.191671 

and 0.251662. Similar to the previous two groups, scenario one represents a vehicle that was 

flagged by the model as potentially failing, and had to be tested 90 days sooner than every 12 

months. In Scenario 1 vehicles were tested and repaired, and stayed clean. This scenario can 

produce 13.06% of CO emission. Scenario 2 shows vehicles that failed an emission test and 

continue to exhibit behaviors of a failing vehicle. This scenario can produce benefits of 7.90% of 

CO emissions.  
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Figure 6-9 Carbon monoxide emissions Group 3 scenarios  

  

 The effect of combining all three groups and examining scenarios for total benefits for 

CO emissions of the new emission testing program can be calculated. Group 1 was responsible 

for 52% of CO emission of all three groups. Group 2 and group 3 have 26% and 22% CO 

emission contributions, respectively. Thus, total CO emission savings are, for Scenario 1, 

28.60% and for Scenario 2, 26.36%. Scenario 1 produced a slightly larger benefit than Scenario 

2.     
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6.2 HC Savings  

 Similar to carbon monoxide, emission savings calculations for the ten percent of the 

most- likely-to fail vehicles [resulting from probability of failure from model calculations] were 

selected and emission savings. Vehicles in the 90th percentile (ten percent of vehicles that are 

most likely to fail) have a probability of failure that is at least four times greater than vehicles in 

the 10th percentile (ten percent of the clean vehicles)  

Table 5-23.  

 Like the carbon monoxide calculations, vehicles in the 90th percentile for the probability 

of failure were split roughly into three parts with the intent to assign different emission test 

frequencies. The group with the highest probability of failure, Group 1 (Table 6-1), will be 

required to take an emission test every three months. Group 2, the middle group of ten percent of 

vehicles with the highest probability of failure, will be tested every six months. Group 3 will be 

tested every nine months. 
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Figure 6-10 Hydrocarbons emission Group 1 scenarios 

 

 When comparing Figure 4-15, which describes passing vehicle behaviors for HC 

emissions, with Figure 4-35, which illustrates failing vehicle behaviors for HC emissions, 

differences can be observed. Two vehicle behavior patterns after repairs are investigated to 

calculate potential emissions savings. First, vehicles that were supposed to be repaired sooner 

had the repair done and exhibited the behavior of a clean vehicle afterwards. In other words after 

repair, growth of HC emissions was flat and the vehicle did not fail again.  Those vehicles were 

not flagged by the model and do not have to come early for testing. The second scenario 

considered vehicles that, even after being repaired, continued to fail. Their HC emissions 

continued to rise at the rate shown in Figure 4-35 and the model flagged them as vehicles likely 

to fail. Every time they came to a test sooner than annually, they failed.  Clean vehicle behavior 

is different from failing vehicles. The first and second scenarios represent the largest and 

smallest benefit from testing vehicles early.    
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 As mentioned previously, vehicles were split into three groups. Group 1 includes vehicles 

with the highest probability of failure. Group 2 is a middle group and Group 3 includes vehicles 

with lower probability of failure in the 90
th

 percentile. Figure 6-10 represents possible emission 

inspection patterns for Group 1, vehicles with the highest probability of failure. Scenario 1 

represents a vehicle that was flagged by the model as likely to fail and it was repaired. After the 

repair, the vehicle exhibited the behavior of a clean vehicle and subsequently did not have to take 

a test for the rest of the year. Repair for those vehicles occurred at day (-270) symbolized by 

reduction of HC emissions and afterwards vehicles remained clean, therefore they had flat HC 

emission growth. This scenario represents a 20.12% reduction of HC emissions for vehicles that 

are included in Group 1.  

    The second scenario for Group 1 represents vehicles that were repaired on the day (-270).  

After the repair they were flagged as likely to fail again. Then they were tested again at day (-

180) failed, were repaired, and then were flagged again by the model as vehicles likely to fail, 

were tested at day (-90), failed that inspection and were repaired. This scenario will produce a 

23.70% reduction in HC emissions. 

 Figure 6-5 represents similar scenarios, but for vehicles that are included in Group 2, the 

vehicles in the middle failing group with a probability of failure between 0.191671 and 

0.251662. Vehicles in this group will be tested six months sooner than their scheduled annual 

test. The green line on the chart represents what would happen to HC emissions if no action is 

taken. The blue line represents Scenario 1, which says that vehicles were flagged by the model as 

failing, were repaired, and reduced HC emissions at day (-180). The repair vehicles remained 

clean and were not flagged by the model as potentially failing vehicles. Therefore, the HC 

emissions growth rate was essentially flat. That scenario can produce 14.48% of HC emission 

savings.  
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Figure 6-5 Hydrocarbon emission Group 2 scenarios 

  

 The red line in Figure 6-5 represents a scenario in which vehicles in group 2 were 

repaired and continued to exhibit behaviors of high pollution vehicle, therefore the growth of HC 

emission was not flat, as in Scenario 1, but was growing at a rate that is consistent with a failing 

vehicle. This scenario can produce 11.23% of HC emission savings. 

 Figure 6-11 shows the third and final group of potentially failing vehicles. This group 

includes vehicles with a probability of failure between 0.191671 and 0.251662. Similar to the 

previous two groups, scenario one represents a vehicle that was flagged by the model as 

potentially failing and had to be tested 90 days before the scheduled annual test rather than every 

12 months. In Scenario 1 vehicles were tested, then they were repaired, and after the repair 

stayed clean. This scenario can produce 12.78% of HC emission. Scenario 2 shows vehicles that 
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failed an emission test but continued to exhibit behaviors of a failing vehicle. This scenario can 

produce a benefit of 10.96% of HC emissions.  

 

 

Figure 6-11 Hydrocarbons emission Group 3 scenarios 

 

 The effect of combining all three groups and examining all the total benefits for HC 

emission of the new emission testing program can be calculated. Group 1 was responsible for 

47% of HC emission of all three groups. Group 2 and Group 3 have 28% and 25% HC emission 

contribution respectively. Therefore, total HC emission savings are for Scenario 1, 16.72% and 

for Scenario 2, 17.06%. Scenario 1 produced a slightly larger benefit than Scenario 2.     

 The emission savings for hydrocarbons for both scenario 1 and scenario 2 are 

summarized in Table 6-2and Table 6-3. 
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Table 6-2 Hydrocarbon reductions for scenarios 1 and 2 

  

Every 90 Days Group 

  

Every 180 days Group 

  

Every 270 Days Group 

  

  

Total HC 

Emissions 

Percent 

reduction 

Total HC 

Emissions 

Percent 

Reduction 

 Total HC 

Emissions 

 Percent 

reduction 

No Repairs 15,882.12   15,595.92   15,595.92   

Scenario 1 12,686.434 -20.12% 13,337.6 -14.48% 13,602.29 -12.78% 

Scenario 2 12,117.953 -23.70% 13,844.41 -11.23% 13,887.36 -10.96% 

 

Table 6-3 Hydrocarbon total reductions based on scenarios 

 

Total 

Emissions 

Percent 

reduction 

Reduction Scenario 1 445561.1673 -16.72% 

Reduction Scenario 2 443764.2053 -17.06% 

 

6.3 NOx Savings 

 Similar to carbon monoxide and hydrocarbon emission savings calculations, the ten 

percent of vehicles most likely to fail resulting from model calculations were selected. Those are 

the same vehicles used in the analysis of emission savings for carbon monoxide and 

hydrocarbons. Vehicles in the 90th percentile (ten percent of vehicles that are most likely to fail) 

have a probability of failure that is at least four times greater than vehicles in the 10th percentile 

(ten percent of the clean vehicles)  

Table 5-23.  

Just as for carbon monoxide calculations, vehicles in the 90th percentile for the 

probability of failure were split roughly into three groups with the intent to assign different 

emission test frequencies. The group with the highest probability of failure, Group 1 (Table 6-1), 

will be required to take an emission test every three months. Group 2, the middle group will be 

tested every six months. Group 3 will be tested every nine months. 
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Figure 6-12 Nitrogen oxides emission Group 1 scenarios 

 

 When comparing Figure 4-15, which describes passing vehicle behaviors for NOx 

emissions, with Figure 4-35, which illustrates failing vehicle behaviors for NOx emissions, 

differences can be observed. Based on those differences two vehicle behavior patterns after 

repairs are investigated to calculate potential emissions savings. First, vehicles that were 

supposed to be repaired sooner, had the repair and exhibited behaviors of a clean vehicle 

afterwards. In other words, after repairs, the growth of NOx emissions was flat, the vehicles did 

not fail again, and those vehicles were not flagged by the model and did not have to come early 

for testing. The second scenario considered vehicles that were repaired and exhibited behaviors 

of failing vehicles. Their NOx emissions continued to rise at the rate shown in Figure 4-35 and 

they were flagged by the model as vehicles likely to fail. Every time they came to perform a test 
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sooner than annually, they failed.  Clean vehicle behavior is different from failing vehicles. The 

first and second scenarios represent the largest and smallest benefit from testing vehicles early.    

 Mimicking carbon monoxide and hydrocarbon analysis, vehicles were split into three 

groups. Group 1 includes vehicles with the highest probability of failure. Group 2 is a middle 

group and Group 3 includes vehicles with a lower probability of failure in the 90
th

 percentile. 

Figure 6-12 represents possible emission inspection patterns for Group 1, vehicles with the 

highest probability of failure. Scenario 1 represents a vehicle that was flagged by the model as a 

vehicle likely to fail and it was repaired. After the repair the vehicle exhibited behavior of a clean 

vehicle and subsequently did not have to take a test for the rest of the year. Repair for those 

vehicles occurred at day (-270) symbolized by reduction of NOx emissions and afterward the 

vehicles remained clean, therefore they had flat NOx emission growth. This scenario represents a 

8% reduction of NOx emissions from vehicles that are included in Group 1, group with the 

highest probability of failure.  

    The second scenario for Group 1 represents vehicles that were repaired on day (-270). 

After the repair they were flagged as likely to fail again. Then they were tested again at day (-

180), failed the test, were repaired, and then were flagged again by the model as vehicles likely 

to fail, were tested at day (-90), failed that inspection and were repaired. This scenario will 

produce a 10% reduction in NOx emissions. 

 Figure 6-13 represents similar scenarios as described above for vehicles that are included 

in Group 2. Those are the vehicles with a probability of failure between 0.191671 and 0.251662. 

Vehicles in this group will be tested six months sooner than their scheduled annual test. The 

green line on the chart represents what would happen to NOx emissions if no action is taken. The 

blue line represents Scenario 1, which says that vehicles were flagged by a model as failing and 

were repaired, thus achieving a reduction of NOx emissions at day (-180). After the repair, 

vehicles remained clean and were not flagged by the model as potentially failing vehicle. 



 

 185 

Therefore NOx emissions growth rate was essentially flat. That scenario can produce 7.88% of 

NOx emission savings.  

 

 

Figure 6-13 Nitrogen oxides emission Group 2 scenarios 

 

 The red line in Figure 6-13 represents a scenario in which vehicles in group 2 were 

repaired and continued to exhibit behaviors of high pollution vehicles, therefore the growth of 

NOx emission was not flat, but was growing at the rate that is consistent with failing vehicles. 

This scenario can produce 4.63% of NOx emission savings. 

 Figure 6-14 shows what will happen to the third and final group of potentially failing 

vehicles. This group includes vehicles with a probability of failure between 0.191671 and 

0.251662.  Scenario one represents a vehicle that was flagged by the model as potentially failing 

and had to be tested 90 days sooner than every 12 months. In Scenario 1 vehicles were tested,  
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repaired, and stayed clean. This scenario can produce 3.50% of NOx emission. Scenario 2 shows 

vehicles that failed an emission test but continue to exhibit the behaviors of a failing vehicle. 

This scenario can produce a benefit of 5.07% of NOx emissions.  

 

 

Figure 6-14 Nitrogen oxides emission Group 3 scenarios 

 

 The combined effect of all three groups and all examined scenarios’ total benefits for 

NOx emission can be calculated. Group 1 was responsible for 45% of NOx emission of all three 

groups. Group 2 and Group 3 have 29% and 26% NOx emission contribution, respectively. Thus, 

total NOx emission savings are, for Scenario 1, 6.65% and for Scenario 2, 7.16%. Scenario 2 

(note the errors in this sentence, I believe, which have been corrected) produced a slightly larger 

benefit than Scenario 1.   

 The results of analysis of nitrogen oxide emission reductions are summarized in Table 

6-4 and Table 6-5. 
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Table 6-4 Nitrogen Oxide reductions based on scenarios 1 and 2 

  

Every 90 Days Group 

  

Every 180 days Group 

  

Every 270 Days Group 

  

  

Total NOx 

Emission 

Percent 

reduction 

Total NOx 

Emission 

Percent 

Reduction 

 Total NOx 

Emission 

Percent 

Reduction  

No Repairs 176,387.76   172,789.6   172,789.6   

Scenario 1 162,855.59 -7.67% 159,174.8 -7.88% 166,747.7 -3.50% 

Scenario 2 158,743.87 -10.00% 164,790.5 -4.63% 164,036.8 -5.07% 

 

Table 6-5 Nitrogen Oxide Reductions 

 

Total 

Emissions 

Percent 

Reduction 

Reduction Scenario 1 6,231,892.28 -6.65% 

Reduction Scenario 2 6,197,998.195 -7.16% 

 

   

6.4 Conversion to Grams per Mile 

 Prior to estimating for pollutants such as carbon monoxide, hydrocarbons, and nitrogen 

oxide, an estimation of current pollution levels should be made. This section will describe the 

calculation undertaken to calculate the amount of emission reduction from the proposed plan. 

Typically, RSD measurements are reported based on the concentration of CO, HC, and NOx in 

terms of ratios of CO, HC, and NOx to CO2. These ratios can be changed over to the mass 

emission factors for each vehicle with the following equations (Pokharel, Bishop, and Stedman, 

2002 On-road Remote Sensing of Automobile Emissions in the Phoenix area Year 3 (CRC 

Contract No. E-23-4)). The following formulas will help to convert percent and parts per million 

concentrations to grams per gallon and then to grams per year of each pollutant.   

                  (
     

      
)   

        

   (         )  (        )
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                  (
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   (         )  (        )
 

 

                   (
      

      
)   

         

   (         )  (        )
 

 

The next step is to compute the mass emission rate of the three pollutants for each vehicle using 

the vehicle miles traveled (VMT)-based approach with the following equation (Zia, 2003 

Cooperative and non-cooperative decision behaviors in response to the inspection and 

maintenance program in the Atlanta air shed, 1997 – 2001. Ph.D. Dissertation, Georgia Institute 

of Technology, Atlanta). 

 

              (
  

    
)  

                   

            
 

 

6.5 Vehicles Eligible for Emission Inspection in Georgia 

 Throughout this research, data that was analyzed represents a subset of the Atlanta fleet. 

To estimate total carbon monoxide, hydrocarbon, and nitrogen oxides emission, the number of 

vehicles present in Atlanta’s 13 counties needs to be calculated. Thirteen counties are chosen 

because Georgia’s Inspection and Maintenance program covers the thirteen counties of the 

Atlanta Metro area. Furthermore, only vehicles between four and twenty-five years old are 

inspected and therefore will be subject to emission reduction benefits from applying the pre-

inspection methodology described previously.  

 The Georgia Registration database for fourth quarter 2010 was employed to calculate the 

number of vehicles registered in the thirteen counties. Out of 3.5 million gasoline vehicles, 2.5 
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million were deemed to be eligible based on vehicle age.  A detailed county breakdown of the 

vehicle registration information can be seen in Table 6-6. 

 

Table 6-6 2010 Thirteen county vehicles 

County 

Name 

County 

Code 

All 

Vehicles 

Eligible 

Vehicles 

First 3 

Model Years 

ASM 

Vehicles 

OBDII 

Vehicles 

Fulton 1 663,148 457,850 113,337 56,528 401,322 

DeKalb 2 467,889 351,805 53,844 51,353 300,452 

Cobb 7 567,112 401,201 74,545 45,289 355,912 

Clayton 13 182,825 129,941 16,365 22,529 107,412 

Gwinnett 16 629,875 453,226 79,277 51,334 401,892 

Coweta 27 114,413 74,538 12,351 11,295 63,243 

Cherokee 35 197,646 130,867 23,141 16,103 114,764 

Henry 54 176,427 120,551 17,918 17,074 103,477 

Douglas 57 108,063 74,670 9,951 10,789 63,881 

Paulding 75 120,122 81,234 11,661 11,430 69,804 

Forsyth 79 161,748 102,989 22,284 10,124 92,865 

Rockdale 89 70,740 48,358 6,251 7,670 40,688 

Fayette 112 109,586 73,840 12,483 9,681 64,159 

 

Totals:   3,569,594    2,501,070     453,408     321,199    2,179,871  

 

 Based on vehicle counts from Table 6-6 and calculations for emission savings using the 

program proposed in this research, 26,056 tons of carbon monoxide, 760 tons of hydrocarbons, 

and 4,549 tons of nitrogen oxide can be kept out of Atlanta’s area annually. Table 6-7 provides 

detailed information about each pollutant. 

 

 

 

 

 

 



 

 190 

Table 6-7 Emission savings 

 
CO HC NOx 

Sampled Vehicle emission, grams 2,364,469,816 108,647,061 466,094,178 

Sampled Vehicle Emissions, Tons per Year 2,364 109 466 

Number of Sampled Vehicles 63,549 63,549 63,549 

Grams per vehicle 37,207 1,710 7,334 

Miles per Year 16,650 16,650 16,650 

Grams per mile 2.24 0.10 0.44 

Sample Vehicle emission with applied savings 2,151,594,421 104,430,284 453,051,524 

Reduction in emissions, grams 212,875,395 4,216,777 13,042,655 

Reduction in emissions, grams/vehicles 3,350 66 205 

Emission per vehicle after reduction, 

grams/vehicle 
33,857 1,643 7,129 

Eligible Vehicle 2010 2,501,070 2,501,070 2,501,070 

Atlanta Total emissions, grams 84,679,353,855 4,110,016,692 17,830,549,254 

Atlanta Total emissions, tons 84,679 4,620 18,820 

Savings per year, grams 8,378,043,152 165,957,835 513,314,014 

Savings per year, tons 8,378 165 513 

 

6.6 Emission and Cost Benefits of Inspected versus Un-inspected fleet versus 

Applying Modeling Technique 

 To estimate emission benefits achieved by the Georgia emission inspection program, the 

reference method is employed. The reference method is often used in emission program 

effectiveness evaluation, as reviewed in section 2.1. The reference method compares two groups 

of vehicles. Vehicles subject to emission inspection were compared to vehicles not subject to 

emission inspection, i.e., vehicles registered outside the inspection and maintenance Atlanta area. 

Measurement for vehicles that were not registered in Atlanta metro were obtained by direct 

measurements in Macon and Augusta, GA as well as some uninspected vehicles captured in 

metro Atlanta locations. Macon, GA vehicles has a similar fuel composition to metro Atlanta 

fuel, therefore fuel differences were not examined in this research.    
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 Based on Figure 2-2 carbon monoxide produced 28 percent savings when inspected 

versus un-inspected fleets were compared. To estimate the economic benefit of carbon monoxide 

emission reduction a few assumptions have been made. First it was assumed that the number of 

tests that need to be done is equal to the number of eligible vehicles. Based on analysis of the 

2010 Georgia Registration database it is estimated that 2,501,070 vehicles are eligible for 

emission inspection tests in metro Atlanta. Second, based on analysis of the 2010 Inspection and 

Maintenance database, the average test in metro Atlanta costs $22.20. Total carbon monoxide 

emissions in metro Atlanta were estimated based on grams per mile emission measured by 

remote emission sensing and then multiplied by the number of eligible vehicles. Based on those 

assumptions and calculations it is estimated that 26,056 tonnes of carbon monoxide are kept out 

of the atmosphere as a result of taking the emission test and repairing failed vehicles. The cost to 

remove a tonne of carbon monoxide from the atmosphere is $2,130 per metric ton of carbon 

monoxide each year. In addition to estimating the benefit achieved by an emission inspection 

program, estimates of program effectiveness also were calculated to account for the effects of 

variable time testing based on probability of failure produced by modeling on the emission 

inspection program. By applying modeling and variable time testing, the effectiveness of the 

emission inspection program will go up, thereby reducing costs from $2,130 to $1,648 per metric 

ton of carbon monoxide per year for the inspected Atlanta fleet. This represents an almost 23% 

cost savings.  

 To estimate the benefits for hydrocarbon, a technique similar to the carbon monoxide 

technique was applied. First, the inspected fleet was compared to the uninspected fleet. Figure 

2-3 represents average hydrocarbon emissions grouped by model year. Based on that chart a 

reduction of 18 percent was calculated. Using assumptions described previously, hydrocarbons 

showed 760 tonnes of savings annually over the saving of vehicles inspected versus uninspected. 

Costs of removing a tonne of hydrocarbons from vehicle emission from the atmosphere was 

estimated to be $72,138 per tonne per year. After estimating the effect of having emission 
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inspection tests, the modeling technique proposed in this research was applied to the program 

and benefits from that modeling effort were calculated. An additional 165 tonnes of 

hydrocarbons were kept from the atmosphere. As a result, the cost of removing one tonne of 

hydrocarbons per year went down from $72,138 to $60,741. Even though reduction in emissions 

was not great, there were 16 percent in cost savings. 

 Calculation of emission inspection benefits for nitrogen oxides follows suit of similar 

calculations for carbon monoxide and hydrocarbons. Based on Figure 2-4 it is estimated that an 

emission inspection program produces 25 percent cleaner vehicles than vehicles from areas 

without emission inspection. In total 4,549 metric tons of nitrogen oxide were removed from the 

atmosphere as a consequence of having emissions inspected and failed vehicles repaired. The 

cost of reducing those emissions comes to $12,205 per tonne of nitrogen oxide per year. After 

the addition of modeling to regular emission inspection programs,  513 additional tonnes of 

nitrogen oxide are removed from the atmosphere and it costs eight percent less ($11,215 per 

tonne each year). 

 Even though the reduction of pollutants by the proposed program was modest, reasonably 

high cost benefits can be obtained considering that very modest costs are needed to operate the 

system. In addition, the proposed program can be easily adjusted to obtain greater benefits. 

Frequency of testing can be interchanged as well as the vehicles that are required for more 

frequent testing. Additional attributes of vehicle characteristics can be added if desired without 

any changes to emission inspection program overhead. 

 The marginal benefits of the proposed new program were calculated based on a $1.25 

million investment. From experience of CAFÉ program $1 million can be spent on collecting 

remote sensing measurements. Cost effective running of a remote sensing program can produce 

upwards of two million remote sensing records and over time create a viable historical dataset of 

remote sensing emission measurements. Remaining $250K will be used for program 

administration, database storage and upkeep and other IT and modeling needs. 
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6.7 Socio-demographic Impact 

 Judging by the analysis presented in the previous sections, vehicles that are older and 

have more accumulated miles will be tested more frequently. Consequently, the owners of those 

vehicles will be affected. Figure 6-15 represents the emission inspection failure rate based on 

income for the census block where the emission station was located. Reasons for choosing 

station location census block income versus individual income were that emission station 

locations are available and are public knowledge as opposed to addresses for individual owners. 

 

Figure 6-15 Emission inspection fail rate by station income category 

  

 Assuming that emission inspections are done in close proximity to residents’ homes,  the 

failure rate has an inverted relationship with income. As income increases failure rate decreases; 

therefore, if the proposed policy goes into effect, owners with smaller incomes would be affected 

to a larger degree than owners with larger incomes. There are two extra burdens that will be 
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placed on those owners. First is the expenditure for the test. Currently in Georgia each test costs 

motorists anywhere between $10 - $25 with an average of $22.20. In all, 2,647,150 paid tests 

were performed in calendar year 2010. Additional expenses due to more frequent testing can be 

mitigated by making the test fee a part of the registration fee. Therefore even if someone will 

need to take more emission inspection tests they will be covered by one annual fee. 

 The second burden mentioned is time to make a test. However time requirements are not 

extremely onerous. 

 

Figure 6-16 Time to take an emission inspection test 

 Based on Figure 6-14, which shows the distribution of time to take an emission 

inspection test, the majority of tests were performed within 7 – 8 minutes with a very small 

percentage of tests requiring more than 10 minutes. In addition to test time, there will be some 

additional time to drive to the test location and wait until the testing station becomes available. 

Perhaps time expenditures can be mitigated by an appointment scheduling system. Appointments 

can be set at a time that is convenient for the vehicle owner to reduce time requirements and 

inconvenience.   
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7 CONCLUSION  

 Emissions from light-duty vehicles constitute a significant portion of pollutants from 

mobile sources. Even though vehicle emission inspections are very successful in reducing those 

emissions, those programs are not optimized to be concentrating on high polluting vehicle rather 

the programs test the whole fleet to identify high emitters. This research is an attempt for vehicle 

emission program optimization. Presently vehicle emission inspection policy is created based on 

selecting subject to emission inspection subject vehicles and setting the frequency of testing for 

those vehicles. Usually subject vehicles are determined by the vehicle's age and frequency is set 

to annual or biennial. 

This work introduces several novel to emission testing concepts. To concentrate emission 

inspection resources on high emitting vehicles and therefore increase efficiency of the program 

combination of in-program and out-of-program data to model probability of failure is introduced. 

In program data includes vehicle characteristics as well as historical test results. Out-of-program 

data consists of testing that was done outside of an emission inspection program such as vehicle 

remote emission testing. By combining those sources of data more accurate model that describes 

vehicle emission profile is assembled.  

The second novel concept that is introduced in this research is a variable timing between 

tests. It is proposed that vehicles with higher probability of failure to have more frequent testing. 

The concept of more frequent testing is based on the hypothesis that if potentially high polluting 

vehicles can be tested more frequently there are emission benefits to be realized from catching 

failing vehicles sooner. On the other hand if the vehicle has a very low probability of failure then 

the time interval between emission test can be stretched since if the vehicle is operating at clean 

emission levels than the test does not do anything to change that.  

Those hypotheses are supported by the analysis in this research. Vehicle emissions from 

vehicles that passed Georgia emission inspection tests suggests that there are  minimal 

differences in criteria pollutants before and after the test. As expected, emissions for the passing 
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group did not change before or after the test since vehicles operated normally and did not require 

any mechanical fixes. A group of vehicles that failed the emission inspection test, on the other 

hand, displayed pronounced trends before and after the repair. Before the repair emissions had an 

upward trend, at the time of the test emissions went down, displaying the repair effect, and 

continued on the upward trend after the test, suggesting that if vehicles can be fixed sooner it can 

produce emission savings results. 

To identify vehicles that are likely to fail, a multi-parameter model based on vehicle 

characteristics, ownership history, previous emission tests, and remote sensing measurements 

was developed. Based on the model results, vehicles were split into categories that are likely to 

fail and not likely to fail. Vehicles that are likely to fail were assigned variable time frequencies 

for the emission test in an effort to catch potentially high polluting vehicles sooner.   

Implementation of this program is estimated to achieve a 9% reduction in carbon 

monoxide, or 8,378 tonnes per year, 4% of hydrocarbons, or 165 tonnes per year, and 3%, or 513 

tonnes per years, of nitrous oxides emissions just by identifying vehicles with a higher 

probability of failure and requiring them to get tested ahead of the regularly scheduled test, 

which corresponds to 23%, 16%, and 8% cost savings for CO, HC, and NOx per-ton-per-year for 

removal of those pollutants from the atmosphere. All those savings can be achieved with a 

modest investment in program administration and virtually no change to existing infrastructure. 

 By introducing a hybrid approach to emission inspection, one that utilizes in-program 

data and uses out-of program data such as vehicle remote emission sensing, the emission 

inspection program can concentrate on higher polluting vehicles and reduce criteria pollutant. 

This research is a first step in understanding complex problems in predicting vehicle failure in 

advance of it occurring. 
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A. APPENDIX A 

Table A-1 Review of state emission inspection programs 

State Metro 

Area 

Time 

period 

Idle 

Test 

OBD Gas 

Cap 

Diesel Mot

orcy

cle 

New 

Vehicle 

Exempt

ion, 

Years 

Subject for 

Test, Model 

Year and 

Newer 

Mileage 

Exempti

on, Miles 

Per Year 

Exemption 

Alaska Anchorage 

MOA 

Annual   Yes   Yes 

Onetime 

pre owner 

No 6 1968   12,000 

Arizona Phoenix, 

Tucson 

Biennial Yes Yes   Yes 

Opacity 

No 4 1966     

California   Biennial   Yes   Yes   6 1976     

Colorado Boulder, 

Broomfield

, Denver, 

Douglas, 

Jefferson 

Annual/b

iennial 

Yes Yes   Yes   4       

Connecticut       Yes     No 4 25   10,000 

Delaware       Yes               

District of 

Columbia 

      Yes         1968     

Georgia 13 

Counties 

Annual Yes Yes Yes No No 3 25   8,500 

Idaho Ada 

County 

    Yes     No 4 1981     

Illinois   Annual Yes Yes Yes No No   1995     

Indiana Lake, Biennial   Yes       4 1976   9,000 
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Porter 

Louisiana                       

Maine                       

Maryland       Yes         1977   26,000 

Massachusetts       Yes               

Missouri St. Louis   No Yes         1995   8,500 

Nevada Clark, 

Washoe 

counties 

    Yes     No 2 1968   14,000 

New 

Hampshire 

      Yes             8,500 

New Jersey       Yes   No No       8,500 

New Mexico       Yes               

New York       Yes Yes No No 2 25   8,500 

North 

Carolina 

                      

Ohio   Biennial   Yes     No 4 25   10,000 

Oregon Portland, 

Medford 

    Yes   Yes     1975   8,500 

Pennsylvania       Yes     No   1975 5000 9,000 

Rhode Island   Biennial   Yes   Yes No 2   24,000 to 

be tested 

8,500 

Tennessee   Annual   Yes         1975   10,500 

Texas   Annual Yes Yes     No 2 24     

Utah   Biennial   Yes       6 1967     

Vermont                       

Virginia   Biennial Yes Yes Yes Yes No 2 25   10,000 

Washington       Yes       5 25     

Wisconsin       Yes     No No 1996   8,500 
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Table A-2 Results of CAFÉ 2009 data collection 

MDate RSD Unit 

Num 

Site ID Beam 

Blocks 

Valid 

Data 

Readable 

LP 

State LP Matched 

to RDB 

Match to 

VinDecod 

1/22/2009 503 22 6112 5852 5286 4960 4383 3471 

1/23/2009 503 40a 3428 3189 2852 2634 2309 1879 

1/29/2009 503 40 2660 2307 2116 1996 1715 1437 

1/30/2009 503 74 11365 10646 9863 9245 8343 6593 

2/5/2009 503 35 4668 4157 3791 3598 3197 2630 

2/6/2009 503 101 1903 1715 1505 1435 1237 1040 

2/10/2009 503 48 9280 8791 7982 7337 6679 5241 

2/12/2009 503 104 8712 7651 7051 6554 5776 4705 

2/13/2009 503 95 6293 5621 4874 4519 3974 3290 

2/26/2009 503 100 4266 4154 3804 3656 3338 2749 

3/5/2009 503 15 7971 6967 6108 5610 5046 4091 

3/10/2009 503 16 4247 4075 3813 3553 3209 2604 

3/11/2009 503 24 12766 12517 11883 11009 10157 7939 

3/12/2009 503 TLS5 5006 4897 4609 4327 4006 3167 

3/18/2009 503 98 5501 4693 4284 4118 3716 2894 

3/19/2009 503 5 5140 4774 4057 3776 3377 2715 

3/20/2009 503 90 4259 3885 3454 3280 2949 2380 

3/24/2009 503 22 6142 5833 5497 5202 4881 3705 

4/3/2009 503 37 12602 11127 9514 8248 7245 5881 

4/8/2009 503 23 3015 2684 2483 2264 2052 1575 

4/9/2009 503 97 3019 2827 2500 2330 2056 1661 

4/15/2009 503 40 2861 2638 2390 2195 1899 1560 

4/16/2009 503 40a 1735 1577 1466 1377 1213 1016 

4/17/2009 503 42 12786 11989 10277 9398 8291 6763 

4/22/2009 503 74 10307 9758 8930 8466 7740 5810 

4/23/2009 503 48 9366 8797 7591 6960 6330 4878 

4/24/2009 503 101 1680 1479 1304 1239 1111 902 

5/7/2009 503 100 4322 4198 3908 3740 3400 2789 

5/8/2009 503 104 6107 5159 4774 4368 3959 3198 

5/19/2009 503 95 5107 4146 4155 3831 3471 2851 

5/20/2009 503 98 5117 3984 3737 3632 3322 2558 

6/10/2009 511 120 2658 1939 1907 1706 1559 1233 

6/11/2009 511 118 2502 2318 2019 1858 1737 1338 

6/12/2009 511 120 5625 5158 4584 4013 3690 2837 

6/17/2009 511 98 7010 6150 5387 5215 4856 3838 

6/19/2009 511 24 8680 8539 7831 7166 6627 5039 

6/24/2009 511 16 4082 3913 3458 3349 2810 2276 

7/7/2009 511 15 5631 4896 4153 3735 3252 2569 

7/8/2009 511 90 3321 2948 2850 2703 2312 1829 
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7/9/2009 511 23 2822 2232 2496 2252 1938 1418 

7/14/2009 511 TLS5 4261 4203 3534 3533 3268 2481 

7/15/2009 511 5 4372 4106 3595 3331 2842 2160 

7/21/2009 511 48 8047 7640 5855 5402 4666 3554 

7/22/2009 511 22 7507 7183 6279 5810 5217 3964 

7/23/2009 511 74 9779 9226 8663 8124 7315 5568 

8/5/2009 511 119 5072 4679 4227 4121 3589 2907 

8/12/2009 511 35 4096 3702 3421 3314 2947 2362 

8/25/2009 511 120 4260 3307 3046 3046 2721 2062 

8/27/2009 511 119 4209 3003 3122 3046 2670 2134 

9/2/2009 511 118 2084 1682 1605 1464 1320 1020 

9/4/2009 511 121 2144 1673 1528 1463 1330 1074 

9/9/2009 511 120 3999 3191 3306 2997 2626 2013 

9/23/2009 511 74 12316 11102 11085 10527 9367 7048 

9/24/2009 511 24 10183 9821 9247 8533 7829 5951 

9/28/2009 511 98 4738 3512 3547 3401 3139 2386 

10/13/2009 511 48 8022 7141 6837 6249 5544 4233 

10/16/2009 511 22 7445 6853 6705 6221 5549 4116 

11/20/2009 511 16 4018 3792 3364 3126 2744 2218 

12/10/2009 511 74 7400 6540 6161 5786 5339 3881 

12/22/2009 511 74 6288 5545 5127 4833 4456 3314 

   350314 318081 290797 271181 243640 190795 

 

Table A-3 Results of data collection CAFÉ 2010 

MDate RSD

Unit 

Num 

Site ID Beam 

Blocks 

Valid 

Data 

Readable 

LP 

State 

LP 

Matched 

to RDB 

Match to 

VinDecod 

1/22/2010 511 95 3729 2886 2704 2518 2230 1819 

1/28/2010 511 48 7028 6443 5247 5247 4920 3670 

2/3/2010 511 15 5647 4663 3864 3709 3141 2485 

2/18/2010 511 37 11672 9442 7721 6957 5973 4652 

2/19/2010 511 42 9468 7744 6503 6497 5980 4609 

2/25/2010 511 5 3350 3043 2214 2214 1816 1385 

2/26/2010 511 100 3650 3546 3102 3098 2821 2221 

3/5/2010 511 98 5921 4894 4897 4895 4192 3145 

3/17/2010 511 104 1935 1610 1376 1375 1188 899 

3/18/2010 511 104 7070 5807 6057 5655 4929 3791 

3/19/2010 511 40 2616 2351 1940 1897 1525 1182 

3/24/2010 511 23 2004 1313 1129 1123 897 649 

4/2/2010 511 22 7880 7066 6011 6011 4757 3405 

4/7/2010 511 42 1949 1747 1170 1170 874 675 

4/9/2010 511 24 10341 9842 8072 8070 6698 4796 
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4/22/2010 511 TLS5 5038 4905 4487 4297 3723 2604 

4/23/2010 511 98 5942 4177 3757 3704 3121 2357 

4/30/2010 511 97 4223 3613 3032 2918 2486 1961 

5/11/2010 511 95 5723 4781 3929 3764 3288 2594 

5/12/2010 511 42 10513 9323 8201 7884 6797 5214 

5/20/2010 511 48 4066 3851 3330 3218 2711 2079 

5/26/2010 511 101A 3945 2896 2607 2541 2253 1761 

5/27/2010 511 74 12302 11260 10427 10051 8910 6325 

6/8/2010 511 101 1641 1385 1267 1238 1093 831 

6/9/2010 511 90 4430 3704 3148 3054 2700 1995 

6/10/2010 503 48 5511 5131 4694 4451 3959 2914 

6/15/2010 503 15 6671 5371 4786 4519 3910 3030 

6/18/2010 503 23 3110 2226 2146 2001 1763 1246 

6/24/2010 503 104 6452 5657 5042 4743 4193 3093 

7/1/2010 503 100 4743 4581 3714 3583 3002 2292 

7/9/2010 503 24 9958 9325 8032 7625 6243 4360 

7/13/2010 503 40 2487 2344 1623 1543 1260 966 

7/14/2010 503 5 4882 4582 2750 2599 2166 1577 

7/21/2010 503 37 10272 8868 7520 7094 5596 4123 

7/23/2010 503 22 6607 6299 5797 5537 4590 3156 

7/28/2010 503 TLS5 4333 4284 3778 3618 3091 2204 

8/10/2010 503 101 1470 1349 987 952 820 628 

8/12/2010 503 97 3007 2789 2153 2085 1793 1361 

8/13/2010 503 90 3625 3161 2490 2387 2050 1479 

8/25/2010 503 95 3150 2785 2274 2202 1859 1440 

8/31/2010 503 98 5007 4009 3097 3062 2685 1925 

9/2/2010 503 74 8507 8097 7306 7087 6231 4288 

10/13/2010 503 16 4633 4396 3553 3467 2775 2071 

10/15/2010 503 42 11000 9695 7858 7528 6190 4629 

10/20/2010 503 104 6864 5761 5126 4922 4068 3011 

10/22/2010 503 15 6574 5576 4674 4491 3638 2715 

10/28/2010 503 23 3056 2293 2263 2171 1803 1268 

11/9/2010 503 48 6614 6043 4456 4278 3526 2508 

11/11/2010 503 100 4555 4432 3700 3628 3079 2324 

11/12/2010 503 5 4524 3869 2788 2686 2275 1635 

11/23/2010 503 97 2916 2470 1969 1905 1651 1235 

12/3/2010 503 24 7525 7294 5974 5675 4942 3404 

12/20/2010 503 22 5785 5587 4685 4522 3989 2683 

  Totals:  295921 260566 221427 213466 182170 134669 
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Table A-4 Remote sensing locations 

Site ID Location City County Grade 

Perc 

Speed Traffic Latitude Longitude 

100 From Bells Ferry Rd to I-575 

South 

Kennesaw COBB 3.5 38 450 34° 03.1900' 084° 33.4300' 

101 From Sigman Rd to I-20 east Conyers ROCKDALE -3.5 30 150 33° 40.9100' 084° 03.8000' 

104 From Hampton Rd ( SR20/81) 

to I-75 North 

McDonough HENRY 0 30 500 33° 25.7600' 084° 10.9900' 

118 Site# New Site 2 in Bartow 

County Exit 288 to I-75 South 

Canton BARTOW 0 35 300 __° __.____' ___° __.____' 

119 SR-12/US-278 To: I-20 West, 

Exit 90 

Covington NEWTON 0 50 600 __° __.____' ___° __.____' 

120 Exit 190, Hwy 20/Canton 

Road To: I-75 South 

Canton BARTOW 3 43 600 __° __.____' ___° __.____' 

121 Exit 93, Hazelbrand Road To: 

I-20 West 

Covington NEWTON 1         

15 Thornton Rd To I-20 East Lithia Springs DOUGLAS 2 41.22 756 33° 46.5900' 084° 36.2700' 

16 From Chapel Hill Rd to I-20 

East 

Douglasville DOUGLAS -2.3 39.29 207 33° 45.0700' 084° 42.8300' 

22 From SR120 to GA 400 South Roswell FULTON 0 37.82 699 34° 04.0100' 084° 16.4000' 

23 From Northside Pkwy to I-75 

South 

Atlanta FULTON 2 44.82 276 33° 51.7200' 084° 26.2500' 

24 From Abernathy Rd to GA400 

South 

Sandy Springs FULTON 5 31.18 1044 33° 55.9300' 084° 21.5000' 

35 On SR 34 West after 

Intersection with US 29/SR 14  

Newnan COWETA 0.5 30 465 33° 24.0200' 084° 47.8300' 

37 From I-75/85 South to I-20 

West 

Atlanta FULTON 1.5 52.4 1170 33° 44.7800' 084° 23.4200' 

40 From Mt.Zion to I-75 North Morrow CLAYTON 2 48.31 531 33° 33.9300' 084° 19.2200' 
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40a From Mt.Zion South to I-75 

North 

Clayton CLAYTON 0 48.31 531 33° 33.9300' 084° 19.2200' 

42 From Jimmy Carter Blvd to I-

85 North 

Norcross GWINNETT -4.5 45.42 906 33° 54.7200' 084° 12.4100' 

48 From Barrett Parkway to I-75 

South 

Kennesaw COBB 5 44.31 588 34° 00.4600' 084° 34.0400' 

5 From Marietta Parkway to I-75 

South 

Marietta COBB 2.5 35.7 699 33° 57.6500' 084° 31.2100' 

74 From Peachtree Pkwy to 

Peachtree Ind Blvd 

Norcross GWINNETT 3 17.35 510 33° 56.8300' 084° 14.2200' 

90 SR20E & SR140E to I-575 

1/2m From SR20 

Canton CHEROKEE 0 45 500 34° 13.2700' 084° 29.8700' 

95 From SR 138 to I-75 North Stockbridge HENRY 3 40 450 33° 32.9000' 084° 16.8200' 

97 From West Ave and Klondike 

Rd to I-20 west (Exit 80) 

Conyers ROCKDALE -1.5 46 391 33° 39.9400' 084° 01.8100' 

98 From Sixes Rd to I-575 South Lebanon CHEROKEE 0 47 511 34° 8.7870' 084° 31.0780' 

AUG2 Wrightsboro Rd to I-520 West Augusta RICHMOND 3.5 40 450 33° 28.0500' 082° 04.9900' 

AUG7 From Peach Orchard Rd. to I -

520 West 

Augusta COLUMBIA 5.5 40 750 33° 24.5100' 082° 02.0900' 

MAC10 From Eisenhower Pkwy to I-

475 South 

Macon BIBB 1 35 35 32° 48.45' 083° 43.50' 

Mac11 From Eisenhower Pkwy to I-

475 North 

Macon BIBB 1 35 342 32° 48.66' 083° 43.52' 

MAC2 Coliseum Drive to I-16 West 

(At Macon Coliseum) 

Macon BIBB 0.5 37.88 384 32° 50.2700' 083° 37.1400' 

MAC9 From Arkwright Rd and Tom 

Hill Sr Blvd to I-75 South 

Macon BIBB 1 27 500 32° 54.0900' 083° 41.1500' 

TLS5 Northside Parkway to I-75 

North 

Atlanta FULTON 7.5 40 500 33° 51.8400' 084° 26.2400' 
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Table A-5 MOBILE6.2 vehicle classifications 

 

 

Table A-6 MOVES vehicle classification 

Source Type 

ID 

Source Type HPMS Vehicle Class 

11 Motorcycles Motorcycles 

21 Passenger Cars Passenger Cars 

31 Passenger Trucks (primarily personal 

use) 

Other Two – Axle/Four Tire, Single 

Unit 

32 Light Commercial Trucks (other use) Other Two – Axle/Four Tire, Single 

Unit 

41 Intercity Buses (non-school, non-

transit) 

Buses 

42 Transit Buses Buses 

43 School Buses Buses 

51 Refuse Trucks Single Unit 

52 Single Unit Short-haul Trucks Single Unit 

53 Single Unit Long-haul Trucks Single Unit 

54 Motor Homes Single Unit 

61 Combination Short-haul Truck Combination 

62 Combination Long-haul Trucks Combination 
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Table A-7 EPA Size type and market segment classifications 

EPA size type:  EPA Market Segment: 

Large Cars  Small Cars 

Midsize Cars  Family Sedans 

Midsize Station Wagons  Upscale Sedans 

Mini compact Cars  Luxury Sedans 

Minivan  Large Sedans 

Small Pickup Trucks  Hatchbacks 

Small Station Wagons  Coupes 

Sport Utility Vehicle  Convertibles 

Standard Pickup Trucks  Sports/Sporty Cars 

Subcompact Cars  Station Wagons 

Two Seaters  Pickup Trucks 

Vans, Cargo Type  Sport Utility Vehicles 

Vans, Passenger Type  Minivans 

   Vans 

 

Table A-8 Vehicle make distribution for vehicles ‘before’ and ‘after’ emission test 

Make Count Percent from 

Total 

ACURA 2309 3% 

ALFA ROMEO 5 0% 

ASTON MARTIN 1 0% 

AUDI 430 0% 

BENTLEY 1 0% 

BMW 2386 3% 

BUICK 984 1% 

CADILLAC 1018 1% 

CHEVROLET 8998 10% 

CHRY/MASERATI 1 0% 

CHRYSLER 2015 2% 

DAEWOO 21 0% 

DODGE 3885 4% 

DODGE/MITS 3 0% 

FERRARI 2 0% 

FORD 12062 14% 

FORD/MAZDA 196 0% 

GMC 2232 3% 

HONDA 10577 12% 

HYUNDAI 882 1% 
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INFINITI 1543 2% 

ISUZU 396 0% 

JAGUAR 373 0% 

JEEP 2268 3% 

KIA 891 1% 

LAND ROVER 273 0% 

LEXUS 3548 4% 

LINCOLN 996 1% 

MASERATI 5 0% 

MAZDA 1581 2% 

MERCEDES 2305 3% 

MERCURY 1012 1% 

MITSUBISHI 1064 1% 

NISSAN 6654 7% 

OLDSMOBILE 446 1% 

PLYMOUTH 181 0% 

PONTIAC 1358 2% 

PORSCHE 145 0% 

SAAB 233 0% 

SATURN 828 1% 

SCION 194 0% 

SUBARU 325 0% 

SUZUKI 165 0% 

TOYOTA 11854 13% 

VOLVO 1039 1% 

VW 1165 1% 

Total 88850 100% 
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Figure A-1 Vehicle distributions by manufacturer for ‘before’ and ‘after’ emission test 
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Table A-9 Odometer statistics for ‘before’ and ‘after’ emission test sample 

      

100.0% maximum 999999 

99.5%  322255 

97.5%  260242 

90.0%  204466 

75.0% quartile 161094 

50.0% median 118877 

25.0% quartile 84378 

10.0%  60260.8 

2.5%  39958 

0.5%  24261.7 

0.0% minimum 3 
 

    

Mean 127138.02 

Standard Deviation 58410.688 

Standard Error Mean 215.74921 

Upper 95% Mean 127560.89 

Lower 95% Mean 126715.15 

Number of Samples 73297 
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Figure A-2 Odometer readings 'before' and 'after' emission test 
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Figure A-3 Vehicle make distribution for ‘before’ and ‘after’ emission test group 

Table A-10 Vehicle make distribution of failed and repaired vehicles 

Level  Count Percent 

from 

Total 

ACUR 117 2% 

AMER 1 0% 

AUDI 33 0% 

BMW 183 2% 

BUIC 96 1% 

CADI 88 1% 

CHEV 1012 13% 

CHRY 235 3% 

DAEW 3 0% 
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DODG 406 5% 

FORD 1090 14% 

GEO 20 0% 

GMC 192 2% 

HOND 667 9% 

HYUN 56 1% 

INFI 96 1% 

ISU 54 1% 

JAGU 21 0% 

JEEP 193 3% 

KIA 57 1% 

LEXS 214 3% 

LINC 62 1% 

LNDR 19 0% 

MAZD 183 2% 

MERC 112 1% 

MERK 1 0% 

MERZ 152 2% 

MINI 2 0% 

MITS 129 2% 

MNNI 1 0% 

NISS 559 7% 

OLDS 74 1% 

PLYM 45 1% 

PONT 186 2% 

PORS 3 0% 

SAA 20 0% 

SCIO 3 0% 

SHEL 1 0% 

STRN 104 1% 

SUBA 14 0% 

SUZI 19 0% 

TOYT 967 13% 

VOLK 105 1% 

VOLV 103 1% 

Total 7698 100% 
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Figure A-4 Vehicle make vs. days distribution for ‘before’ and ‘after’ repair sample 
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Figure A-5 Vehicle Make Vehicle Specific Power profiles for ‘before’ and ‘after’ repair sample 
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Figure A-6 Odometer reading distribution for 'Failed' and 'Repaired' vehicles 

Table A-11 Vehicle make distribution modeling data 

Level  Count Prob 

ACUR 2950 0.02515 

ALFA 3 0.00003 

AMER 4 0.00003 

ASTO 1 0.00001 

AUDI 572 0.00488 

BENT 2 0.00002 

BMW 3067 0.02615 

BUIC 1308 0.01115 

CADI 1379 0.01176 

CHEV 11917 0.1016 

CHRY 3296 0.0281 

DAEW 30 0.00026 
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DODG 5238 0.04466 

EAGL 1 0.00001 

EGIL 4 0.00003 

EGLE 1 0.00001 

FERR 4 0.00003 

FORD 15640 0.13334 

GEO 86 0.00073 

GMC 2900 0.02472 

HOND 13441 0.11459 

HUMM 35 0.0003 

HYUN 1520 0.01296 

INFI 2073 0.01767 

ISU 514 0.00438 

JAGU 485 0.00413 

JEEP 2935 0.02502 

KIA 1208 0.0103 

LEXS 4495 0.03832 

LINC 1308 0.01115 

LNDR 346 0.00295 

MASE 6 0.00005 

MAYB 1 0.00001 

MAZD 2059 0.01755 

MERC 1303 0.01111 

MERK 1 0.00001 

MERZ 2968 0.0253 

MIN 6 0.00005 

MINI 41 0.00035 

MITS 1518 0.01294 

MNNI 107 0.00091 

NISS 8558 0.07296 

OLDS 574 0.00489 

PANO 1 0.00001 

PLYM 274 0.00234 

PONT 1889 0.0161 

PORS 182 0.00155 

SAA 339 0.00289 

SATU 1 0.00001 

SCIO 65 0.00055 

SHEL 1 0.00001 

SRCT 1 0.00001 
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STRN 1130 0.00963 

SUBA 376 0.00321 

SUZI 244 0.00208 

TOYO 5 0.00004 

TOYT 15818 0.13486 

VOLK 1590 0.01356 

VOLV 1473 0.01256 

Total 117294 1 

  

Table A-12 Model estimates formula table 

Measure Definition 

Entropy R-Square 1-Loglike(model)/Loglike(0) 

Generalized R-Square (1-(L(0)/L(model))^(2/n))/(1-L(0)^(2/n)) 

Mean -Log p ∑ -Log(ρ[j])/n 

RMSE √ ∑(y[j]-ρ[j])²/n 

Mean Abs Dev ∑ |y[j]-ρ[j]|/n 

Misclassification Rate ∑ (ρ[j]≠ρMax)/n 

Number of Samples n 

 

Table A-13 CAFÉ 2010 database design fields 

Field Number Name Type Size 

1 MDate Date/Time 8 

2 SiteID Text 5 

3 RSDUnitNum Integer 2 

4 VehicleSequence Integer 2 

5 MTime Text 8 

6 COperc Double 8 

7 COflag Text 1 

8 CO2perc Double 8 

9 CO2flag Text 1 

10 CO2Max Double 8 

11 CO2volume Double 8 

12 HCppm Long Integer 4 

13 HCflag Text 1 

14 NOxppm Long Integer 4 

15 NOxflag Text 1 

16 Opacity Double 8 

17 Opacityflag Text 1 
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18 ColdStart Text 1 

19 SpeedMPH Double 8 

20 Speedflag Text 1 

21 Acceleration Double 8 

22 Accelflag Text 1 

23 SpeedAccelerationUnits Text 2 

24 LicensePlate Text 25 

25 LicensePlateFlag Text 1 

26 LicenseType Text 5 

27 VIN_RDB Text 26 

28 Make_RDB Text 5 

29 VehModel_RDB Text 16 

30 Body_RDB Text 3 

31 Year_RDB Text 5 

32 Axle_RDB Text 5 

33 Fuel_RDB Text 2 

34 Cylinders_RDB Text 5 

35 Color_RDB Text 4 

36 GrossWeight_RDB Text 7 

37 City_RDB Text 23 

38 State_RDB Text 3 

39 ZIP_RDB Text 10 

40 Odometer_RDB Text 7 

41 PurchDate_RDB Text 11 

42 EmissionNum_RDB Text 11 

43 EmissionDate_RDB Text 11 

44 Cnty_RDB Long Integer 4 

45 VIN_VIN Text 255 

46 VINERROR_VIN Text 255 

47 YEAR_VIN Text 255 

48 MAKE_VIN Text 255 

49 SERIES_VIN Text 255 

50 BODY_VIN Text 255 

51 DISP_VIN Text 255 

52 UN_VIN Text 255 

53 CYL_VIN Text 255 

54 ASP_VIN Text 255 

55 IND_VIN Text 255 
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56 AIR_VIN Text 255 

57 EVP_VIN Text 255 

58 OXY_VIN Text 255 

59 TWC_VIN Text 255 

60 EGR_VIN Text 255 

61 CLL_VIN Text 255 

62 PCV_VIN Text 255 

63 TAC_VIN Text 255 

64 MANUFACTURER_VIN Text 255 

65 CNTRY_VIN Text 255 

66 TYPE_VIN Text 255 

67 GVWR_VIN Text 255 

68 FUEL_VIN Text 255 

69 MOBILE6TYPE_VIN Text 255 

70 VIDETW_VIN Text 255 

71 VIDGVW_VIN Text 255 

72 ESTLVW_VIN Text 255 

73 ESTALVW_VIN Text 255 

74 VSP Double 8 

 

Table A-14 Pass Fail Results for Original Owner variable 

  Non-original Owner Original Owner 

Year_RDB Fail Pass Fail Pass 

1985 0 2 0 0 

1986 19 74 1 3 

1987 14 93 1 2 

1988 29 137 2 8 

1989 48 167 3 8 

1990 65 239 4 11 

1991 112 321 4 17 

1992 159 508 7 41 

1993 187 703 11 67 

1994 216 1097 17 106 

1995 269 1681 7 172 

1996 354 1922 11 200 

1997 503 2572 21 339 

1998 493 3230 40 568 

1999 523 4193 54 909 

2000 634 5168 90 1372 

2001 799 4925 176 1734 
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  Non-original Owner Original Owner 

Year_RDB Fail Pass Fail Pass 

2002 666 5604 194 2497 

2003 603 5496 194 3044 

2004 459 5792 219 3921 

2005 362 5446 227 4442 

2006 263 4971 185 5089 

2007 135 3981 226 6608 

2008 3 74 9 304 

2009 0 0 0 4 

2010 0 0 0 1 

 
 

 
Figure A-7 Scatter plot matrix for model variables 
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B. APPENDIX B 

Atlanta Fleet Characterization 1993 - 2008 (DNR CAFÉ 93 – 2008 Final Report) 

7.1.1 Fleet Composition 

 Emission of any individual vehicle depends on the efficiency of its emission control 

system and its deterioration over time. Accordingly, vehicle emissions should depend on vehicle 

type, make, model, and model year (age), which determine the fleet composition. During the 

current period, 1993-2008, there were some changes in fleet composition by manufacturers.  

 

Figure B-1 Percentage of vehicles of different manufacturers by year of measurement 

 

 Figure B-1 shows the percentage of all vehicles (of all ages) for groups of manufacturers 

with the highest number of vehicles in the sample vs. measurement year. The most striking 

feature is a decrease of GM vehicles in the fleet. At the same time there is a significant decrease 

of Toyota vehicles. The fraction of Toyota initially was lower than Honda; as oppose to the 
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period between 2005-2008 when it became. There is also a decrease in the fraction of Ford and 

Chrysler and a slight increase in BMW and Mercedes. 

 There is not enough data to evaluate the emissions of individual models. However, it can 

be done for vehicle makes. Figure B.2 illustrates the dependence of CO-Avg by model year on 

age for cars of various makes. Age is defined as the difference between the current measurement 

year and the vehicle model year. Age 0 is assigned to vehicles of the current year and of the 

upcoming year. 

 

Figure B-2 Dependence of CO average by age for the vehicle makes in the measurement year 

interval 2005-2008 

 

 It was shown in many studies that age is the main factor that determines the vehicle 

emission. We have very little data on mileage, so it is assumed that mileage is proportional to 

age. We make an assumption that the technology of the vehicle emission control system did not 

change significantly during the period 2005-2008. In Figure B.2, averages over this period 

dependences are shown. There are no significant differences for the new vehicle (age 0-2), 
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except Nissan, but for higher ages the curves split. Ford, Chevrolet, Nissan, and Toyota represent 

groups with similar emissions, while Mercedes and BMW have lower emissions, and Honda and 

Acura have higher emissions. Generally luxury vehicles are cleaner than more popular models 

since most likely they are better maintained vehicles. Most luxury makes manufacturers offering 

no-cost maintenance, which may contribute to this effect.  

 The most unexpected result is that Honda is not one of the cleanest makes. However, the 

same fact is observed in data for Missouri 2002 and Virginia 2002. This fact needs more analysis 

with higher volume of data and for separate modules. It follows from these dependencies that 

fleet composition by Make/Model can be a significant factor of vehicle emissions for older ages. 

 

Figure B-3 Changes in vehicle distribution of VIN type 

 

 There are significant changes in fleet composition by vehicle type. Figure B-3 shows 

changes in the distribution of vehicle types defined by VIN decoder: CAR and various types of 

light duty trucks (LDT), TRUCK (pickup truck), SUV (MPV), and VAN (minivan). It is well 
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known that fleet composition is constantly changing. Manufacturers are constantly trying to 

reinvent themselves and come up with vehicles that better fit current market conditions and 

consumer demands. This phenomenon was never more evident than in the last two decades. 

During this time consumer preferences changed toward larger vehicles. This change was driven 

by relatively cheap oil prices and more efficient engines. As a result, the fastest growing vehicle 

segment at that time was the sport utility vehicle (SUV). Pickup trucks and vans were growing as 

well, although at a slightly slower pace. Increase of SUVs, pickup trucks, and vans came at the 

expense of passenger cars. Figure B-4 shows that in 1993 passenger cars accounted for 75% of 

the total fleet; however, by 2006 their fraction came down to about 50% of the total fleet. In 

recent years spikes in gasoline prices are seemingly reversing this trend as evidenced by the 

years 2007 and 2008. We can see that the fraction of passenger cars is increasing slightly and the 

fraction of SUVs and trucks are decreasing.  

 

Figure B-4 Percentage of LDV and LDT for various measurement years 
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 Figure 3.4 is another representation of Figure 3.3. Here we have represented a change in 

fleet composition according to MOBILE6 vehicle classification. LDV in this case is represented 

by passenger vehicles and LDT incorporates SUVs, pickup trucks, and vans. Increase of LDT in 

the sample is accompanied by an increase of emission at an older age.  

7.1.2 Dependence on Age 

 Vehicle technology improvements played a major role in vehicle emission reduction as 

well as dependability and longevity of vehicles. Figure 3.5 shows emission deterioration when 

we examine vehicle measurements captured during the 1996 CAFÉ contract.  

 

Figure B-5 Age dependence of CO average by model year for various VIN types. Data 1996 

 

 Vehicles on this chart are grouped by the above-mentioned vehicle categories. We can 

see that emissions for all categories are rising with age almost at the same rate until vehicles 

become about 22 years old; after that emissions start to stabilize and even decrease. The main 
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reason is that vehicles that reach that age and still are being driven, most likely went through a 

major overhaul to keep them running. Engines, transmissions, and emission equipment are being 

repaired and/or replaced and thus become cleaner. There is only one category that behaved 

slightly differently. The van category that included minivans was relatively new in 1996 and 

therefore the maximum age for this category is 18 years; therefore, we were not able to observe 

the same trend. It is also important to note that the age of all vehicles was capped at 25 years 

because we do not observe a sufficient number of vehicles older than 25 years. Because of the 

low number of vehicles of that age the error of measurement becomes great and it is difficult to 

see trends for those cars and trucks. Let us compare Figure 3.5 with measurements of 1996 to 

Figure 3.6 which shows vehicles measured during 2004 data collection efforts.  

 

Figure B-6 Age dependence of CO average by model year for various VIN types. Data 2004 

 

 As we can see, there are several major differences between those two figures. First and 

foremost, the deterioration rate is much slower. In 1996 vehicles that were five years old had 

roughly 0.5% of carbon monoxide compared to vehicles that were measured in 2004 that reached 
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the same emission levels of 0.5% CO at ten years old. We also see that scatter between 

categories became much smaller. In 1996 there was a sizable difference between cars and trucks, 

cars being significantly cleaner than trucks. In 2004, however, this difference is much smaller 

and starts to manifest itself at a much older age. We also can see the survival effect. As 

mentioned before in 1996 twenty-two year old vehicles went through some repairs and became 

cleaner. In 2004, on the other hand, we do not observe the same behavior. Even at twenty-five 

years old a vehicle continues to deteriorate without any evidence of repair activity. It suggests 

that vehicles stay operational much longer without any repairs necessary.  

 Figure B-7 shows the different independence of CO average by model year for the total 

sample on vehicle age for measurement years 1994, 2000, and 2008. As the measurement year 

increases dependence on age changes dramatically. Emissions of old vehicles as well as new 

vehicles are much lower in 2008. 

 

Figure B-7 Comparison of dependences CO average by age for different measurement years 
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Figure B-8 CO average of total sample and vehicles of latest three model years at various 

measurement years 

 

 The fleet as a whole is getting much cleaner and there is a significant improvement of 

new vehicles as well. Those decreases are sharper in the range 1994-2000 and dependence 

becomes almost flat at 2005-2008. Similar dependences exist for HC and NO – Figure B-9 and 

Figure B-10 accordingly. 
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Figure B-9 HC average years sample and vehicles of latest three model years at different 

measurement years 
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Figure B-10 NOx average total sample and vehicles of latest three model years at different 

measurement years 

 CO average vs. age (Figure B-7) shows the change of shape for older vehicles: saturation 

and then decreases in emission.  This result is due to the effects of survival: only well-maintained 

and probably repaired vehicles survive to a very old age.  Dirty vehicles do not survive to old age 

and leave the fleet. This conclusion is confirmed by graph Figure B-11, which shows 

deterioration of emission during the period 1993-2008 for vehicles of different model years.  
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Figure B-11 Change of CO emission from vehicles of various model years by measurement year 

 

 For the oldest vehicles of MY 1975 there is no deterioration; instead, a decrease of 

CO_avg is observed; for MY 1980 also there is no deterioration, and dependence is flat. In both 

cases badly deteriorated vehicles left the fleet. For MY 1987 and 1993 normal deterioration is 

observed till 2005: emission increases with age, but after 2005 dependence also becomes flat.  

 There is a difference in emission from vehicles belonging to I/M and non-I/M counties 

(Figure B-12). Older vehicles in I/M counties have lower emissions because their emission 

control system is better maintained due to the I/M program. The difference in emissions for I/M 

and non-I/M counties represents the basis for calculation of I/M efficiency. In 1994 we compared 

emissions in 4 counties with 9 counties, that did not have an I/M program at the time. In 2008 we 

compared emissions in 13 counties with reference counties (area of Macon and Augusta) that do 

not have a program. It is interesting to note that the difference in 2008 is larger than in 1994. It 

may be due to the fact that program of 1994 consisted of a basic idle test, whereas in 2008 the 

Atlanta area had a more efficient enhanced program based on the ASM test and OBDII data. 
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Figure B-12 Comparison of dependence CO average by age of I/M and non-I/M counties 
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APPENDIX C  

Table C-1 Failure rates ‘original’ vs. ‘non-original’ owner 

Model Year 1986 1987 1988 1989 1990 1991 1992 1993 

Non-Original Owner 26% 15% 21% 29% 27% 35% 31% 27% 

Original Owner 33% 50% 25% 38% 36% 24% 17% 16% 

         Model Year 1994 1995 1996 1997 1998 1999 2000 2001 

Non-Original Owner 20% 16% 18% 20% 15% 12% 12% 16% 

Original Owner 16% 4% 6% 6% 7% 6% 7% 10% 

         Model Year 2002 2003 2004 2005 2006 2007 2008 

 Non-Original Owner 12% 11% 8% 7% 5% 3% 4% 

 Original Owner 8% 6% 6% 5% 4% 3% 3% 
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Table C-2 Frequency distribution for displacement recoded variable 

Level  Count Percent of Vehicles 

1 6587 0.07833 

2 21933 0.26083 

3 29644 0.35253 

4 16863 0.20054 

5 8669 0.10309 

6 389 0.00463 

7 2 0.00002 

8 2 0.00002 

Total 84089 1.00000 
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