

Mitigating Fatigue of Cantilevered Overhead Sign Structures Due to Natural Wind and Truck-Induced Gusts

Presented at the University Transportation Center Conference for the Southeastern Region

Georgia Tech Global Learning Center

Mohamed S. Gallow

Graduate Student

Department of Civil, Construction, and Environmental Engineering

[Project Sponsored by Alabama DOT & NCTSPM – PI: Dr. Fouad H. Fouad; Co-PI: Dr. Ian Hosch]

March 25, 2014

Problem Statement

- Failure of overhead sign structures due to wind induced fatigue vibrations have been reported, with an estimate of about 20 cantilever support structures fail every year in the U.S.
- Wind induced fatigue vibrations are primarily caused by:
 - Natural Wind gusts
 - Truck induced gusts

Background

- Fatigue
- Susceptibility of overhead sign structures to fatigue vibrations
- Nature of wind loads
- Frequencies of sign structures vs. wind frequencies

Objective

 Mitigate fatigue stresses of cantilevered overhead sign structures due to natural wind and truckinduced gusts

Approach

- Modify structural fundamental frequency
 - Stiffness and mass distributions $f_o = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$

Considerations

- AASHTO Supports Specifications
- Practical member shapes
- Design economy

Work Plan

- Assemble shop drawings
- Define fatigue loading functions, <u>EXCITATION</u>
- Full scale 3D FEA modeling
- Calculate frequencies and fatigue stresses, <u>RESPONSE</u>
- Check Model Accuracy
- Investigate factors affecting structure's dynamic performance and induced fatigue stresses:
 - Member Size
 - Member shape

- Truss member arrangement
- Structure Type

- Conclusions
- Final Report

Structure Excitation

 Natural Wind Gusts (PSD)

 Truck-induced Wind Gusts (TH)

Structure Response

First mode of vibration (Natural wind)

Second mode of vibration (Truck wind)

FEA frequency = 1.53 Hz

Difference = 4.97 %

Max. Fatigue Stress at Post Base = 5.28 ksi

Experimental frequency = 1.64 Hz

FEA frequency = 1.64 Hz

Difference = 0.0 %

Max. Fatigue Stress at Post Base = 0.306 ksi

Structure Types

1) 4-chord Cantilevered Sign Structure

Structure Types... (cont'd.)

2) 2-chord Cantilevered Sign Structure

Structure Types... (cont'd.):

Factors Affecting Dynamic Response of 4&2-chord Cantilevered Sign Structures:

1. Member shape: Lowest fatigue forces from dynamic response resulted from using round tubes for mast-arm members and post

Members	Section Shape

Structure Types... (Cont'd.):

Factors Affecting Dynamic Response of 4 & 2-chord Cantilevered Sign Structures:

- 2. Member size: Post size has the greatest effect in controlling dynamic response and fatigue stresses
- 3. Members arrangement: different truss configurations for the same layout doesn't have significant effect on dynamic response

Structure Types... (Cont'd.):

3) Monotube Cantilevered Sign Structure

a) Slanted Post (Curved End)

b) Vertical Post (Curved End)

c) Vertical Post (Straight End)

Structure Types... (Cont'd.):

Factors Affecting Dynamic Response of Monotube Cantilevered Sign Structures:

1. Layout

a) Slanted Post (Curved End)	b) Vertical Post (Curved End)	c) Vertical Post (Straight End)
Freq. = 1.344 Hz	Freq. = 1.239 Hz	Freq. = 1.160 Hz
- Fatigue@post base = 6.00ksi	- Fatigue@post base = 6.03ksi	- Fatigue@post base = 6.16ksi
- At field Splice = 2.40 ksi	- At field Splice = 2.92 ksi	- At field Splice = 4.60 ksi

2. Radius of post curve (Structure Redesign)

R = 8 ft	R = 10 ft	R = 12 ft
Freq. = 1.452 Hz	Freq. = 1.480 Hz	Freq. = 1.507 Hz
- Fatigue@post base = 6.01ksi- At field Splice = 5.14 ksi	<u> </u>	- Fatigue@post base = 5.97ksi - At field Splice = 4.87 ksi

Structure Types...(Cont'd.)

Factors Affecting Dynamic Response of Monotube Cantilevered Sign Structures:

3. Members' Size: As D/t for the post increases, fatigue stresses decrease

Comparing Structure Types

Knowledge that will change your world

Fatigue Mitigation in Cantilevered Overhead Structures

Conclusions:

- Fatigue critical sections are located at main connections (mast-arm/post connection and base connection)
- Fatigue stresses due to truck-induced wind gusts are insignificant in comparison with natural wind gusts (≈1:20)
- Increasing structure's frequency reduces fatigue stresses
- Increasing stiffness of mast-arm is not as effective as increasing post stiffness in controlling fatigue stresses
- Lowest fatigue forces from dynamic response resulted from using round tubes for mast-arm members and post
- Increasing D/t of the post reduces fatigue forces and stresses

Fatigue Mitigation in Cantilevered Overhead Structures

Conclusions...(Cont'd.):

- Different truss configurations for the arm layout didn't have significant effect on fatigue stresses
- Slanted mono-tube sign structure is preferred because of its high frequency, small fatigue stresses, and light weight in comparison with other layouts

THANK YOU ANY QUESTION!

